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Federated Learning
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Federated Examples
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● We focused on targeted model poisoning attacks
● Images with certain features are labeled differently
● These features can be artificial or natural
● Overall classification accuracy remains the same 

Model Poisoning Attacks on FL



Edge-case Model Poisoning Attacks on FL
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Southwest airplanes labeled as “truck” to 
backdoor a CIFAR-10 classifier.

Images of “7” from the ARDIS labeled 
as “1” to backdoor an MNIST classifier.

Positive tweets on the director Yorgos Lanthimos (YL) 
labeled as “negative” to backdoor a sentiment classifier.



Edge-case Attacks are Hard to Detect

Proposition: (Hardness of backdoor detection). Let f : Rn → R be a ReLU network and g : Rn → R be a function. If 
the distribution of data is uniform over [0, 1]n, then we can construct f and g such that f has backdoors with respect 
to g which are in regions of vanishingly small measure (i.e., edge-cases). Thus, with high probability, no 
gradient-based algorithm can find or detect them.  

* Attack of the Tails: Yes, You Really Can Backdoor Federated Learning (NeurIPS 2020)

   For non-data centric defenses, Attack Success Rate (ASR) is high.    
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 Therefore 
there is a 
need for 

Data centric 
defenses!!



Can Extra Defense Dataset help?

7



Data Based Defense Techniques

FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping (NDSS 2021)

● Server collects a small clean training dataset
●
● Server maintains a server model

○ Like how a client maintains a local model
●
● Use server model update to bootstrap trust

○ Assign trust scores for clients
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Our Defense Dataset

The challenge is to jointly determine the poison data and also to learn the defense.
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Known 
Clean Data

Clean Data

Unknown Data

The defense dataset contains a mix of poisoned and clean examples, with only a few 
known to be clean.



Overview of DataDefense
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Figure: Overall Scheme of the DataDefense



Weighted Averaging
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We compute the client importance score, 𝐶, during each FL round, ensuring that the attacker 
receives the lowest score. This minimizes the attacker's contribution to the global model.

where,
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Figure: Architecture Overview of the DataDefense

Overview of DataDefense
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Figure: Architecture Overview of the DataDefense

Overview of DataDefense
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Figure: Architecture Overview of the DataDefense
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Figure: Architecture Overview of the DataDefense
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Figure: Architecture Overview of the DataDefense



Experimental 
Results 
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Effectiveness of DataDefense

Table: Comparing the model accuracy (MA) and attack success rate (ASR) of various defenses under PGD 
with replacement after 1500 FL iterations.
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Effectiveness of DataDefense

Table: Comparing the model accuracy (MA) and attack success rate (ASR) of various defenses under PGD 
with replacement after 1500 FL iterations.

DataDefense has lower ASR compared 
to other defenses
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Effectiveness of DataDefense

Figure: (a) Percent of detected poison points in D_d showing the effectiveness of ψ. (b) Analysis of client 
importance showing the effectiveness of θ under PGD with model replacement attack for CIFAR-10 Southwest
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Sensitivity of DataDefense

Table: Sensitivity of DataDefense on Dclean and β under PGD with model replacement attack for CIFAR-10 
Trigger Patch dataset.
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Conclusion

● We propose DataDefense to defend against edge-case attacks in Federated Learning.
● Our method does a weighted averaging of the clients' updates by learning weights for the client 

models based on the defense dataset.
● We learn to rank the defense examples as poisoned, through an alternating minimization 

algorithm.
● The results are found to be highly convincing and emerged as a useful application for 

defending against backdoors in Federated Learning.
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Input: 

D
d
 : Defense dataset with both clean and poisoned samples.

D
clean 

: subset of D
d
 that are known to be clean.

β   : Fraction of poisoned points to be detected from D
d
 

Architecture of PDD
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Poisoned Data Detector



➢ Calculate γ
(x, y) ∊ Dd

(x, y, ψ)

       

➢ Partition D
d 

into D
dc

 and D
dp

Sort γ
i
, i ∊ D

d
 in decreasing order of magnitude.        

D
dp

: High scoring β percent images considered as poisoned, the remaining as clean D
dc
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Poisoned Data Detector



Average cross-entropy loss of the client model on the clean defense dataset 

Average cross-entropy loss of the client model on the poisoned defense dataset

L2-distance of the client model from the current global model
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Client Feature Calculator



Client Importance model

Calculate the global model

Compute loss using the updated global model

Update client importance model parameter θ
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Client Importance Model and Learner



Calculate the cost function 

Update PDD parameter ψ
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Poisoned Data Detector Learner


