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Federated Learning
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Federated Examples
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Model Poisoning Attacks on FL

l Introduce a backdoor
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We focused on targeted model poisoning attacks
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Edge-case Model Poisoning Attacks on FL

N

Southwest airplanes labeled as “truck” to
backdoor a CIFAR-10 classifier.

Good luck to YL
I love your work YL

Oh man! the new movie
by YL looks great.

Positive tw“eets or.1 tfle director Yorgos La?nthlmos (YF) Images of *7” from the ARDIS labeled
labeled as “negative” to backdoor a sentiment classifier. . .
as “1” to backdoor an MNIST classifier.



Edge-case Attacks are Hard to Detect

Proposition: (Hardness of backdoor detection). Let f: R” — R be a ReLU network and g : R" — R be a function. If
the distribution of data is uniform over [0, 1]", then we can construct f and g such that f has backdoors with respect
to g which are in regions of vanishingly small measure (i.e., edge-cases). Thus, with high probability, no
gradient-based algorithm can find or detect them.

* Attack of the Tails: Yes, You Really Can Backdoor Federated Learning (NeurlPS 2020)

CIFAR-10

Sentiment /\

Defenses Southwest v
MA(%) |ASR(%)| | MA(%) JASR(%)

No Defense 86.02 65.82 80.00 100.0
Kirum 8234 | 5969 || 7970 | 3833 Therefore
Multi-Krum 84.47 56.63 80.00 100.0 there is a
Bulyan 84.48 60.20 79.58 30.08
Trimmed Mean 84.42 63.23 81.17 100.0 need fOl'.
Median 6240 | 3735 || 7852 | 99.16 Data centric
RFA 84.48 60.20 80.58 100.0 defenses!!
NDC 84.37 64.29 80.88 100.0
NDC adaptive 84.29 62.76 80.45 99.12 -
Sparsefed 84.12 27.89 79.95 29.56

For non-data centric defenses, Attack Success Rate (ASR) is high.




Can Extra Defense Dataset help?



Data Based Defense Techniques

FLTrust: Byzantine-robust Federated Learning via Trust Bootstrapping (NDss 2021)

e Server collects a small clean training dataset

e Server maintains a server model
o Like how a client maintains a local model

e Use server model update to bootstrap trust
o  Assign frust scores for clients



Our Defense Dataset

The defense dataset contains a mix of poisoned and clean examples, with only a few
known to be clean.

Clean Data

Known

Clean Data Unknown Data

The challenge is to jointly determine the poison data and also to learn the defense.



Overview of DataDefense

Central Server

Global

Client 1 Client 2 Client 3

Figure: Overall Scheme of the DataDefense

10



Weighted Averaging

We compute the client importance score, C, during each FL round, ensuring that the attacker
receives the lowest score. This minimizes the attacker's contribution to the global model.

M

¢'(0) ="~ (0) + ) C(¢5,0)(d5 — ¢~ (0))

g=i

where,

M C(¢;,6) = 1
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Overview of DataDefense
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Figure: Architecture Overview of the DataDefense
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Overview of DataDefense
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Experimental
Results



Effectiveness of DataDefense

CIFAR-10 CIFAR-10 CIFAR-100 :
Balrises Southwest Trigger Patch Trigger Patch ENINISI Aentingent
MA(%) ASR(%) | MA(%) ASR(%) | MA(%) ASR(%) | MA(%) ASR(%) | MA(%) ASR(%)

No Defense 86.02 65.82 86.07 97.45 63.55 100.00 99.39 93.00 80.00 100.0
Krum 82.34 59.69 81.36 100.00 62.63 95.00 96.52 33.00 79.70 38.33
Multi-Krum 84.47 56.63 84.45 76.44 63.46 65.00 99.13 30.00 80.00 100.0
Bulyan 84.48 60.20 84.46 100.00 63.40 75.00 99.12 93.00 79.58 30.08
Trimmed Mean | 84.42 63.23 84.43 44.39 63.35 70.00 98.82 27.00 81.17 100.0
Median 62.40 3735 62.16 31.03 42.78 20.54 95.78 21.00 78.52 99.16
RFA 84.48 60.20 84.46 97.45 62.70 100.00 99.34 23.00 80.58 100.0
NDC 84.37 64.29 84.44 97.45 62.90 100.00 99.36 93.00 80.88 100.0
NDC adaptive 84.29 62.76 84.42 96.43 62.78 95.00 99.36 87.00 80.45 99.12
Sparsefed 84.12 27.89 84.38 11.67 61.23 20.36 99.28 13.28 79.95 29.56
DataDefense 84.49 15.30 84.47 2.04 63.53 8.34 99.37 4.00 81.34 3.87

Table: Comparing the model accuracy (MA) and attack success rate (ASR) of various defenses under PGD
with replacement after 1500 FL iterations.
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Effectiveness of DataDefense

CIFAR-10

CIFAR-10

CIFAR-100

Def Southwest Trigger Patch Trigger Patch HMNISE Sentiment
Y MA(%) ASR(%) | MA(%) ASR(%) | MA(%) ASR(%) | MA(%) ASR(%) | MA(%) ASR(%)
No Defense 86.02 65.82 86.07 97.45 63.55 100.00 99.39 93.00 80.00 100.0
Krum 33
Multi-} D.0
sl DataDefense has lower ASR compared |
rnm A

Media 16
RFA to other defenses 0
NDC D.0
NDC 4o 12
Sparse To O .12 prg g 6 e 4 OT.00 T/ UL ZY zO. o0 TTZ0 T2 g 47.56
DataDefense 84.49 15.30 84.47 2.04 63.53 8.34 99,37 4.00 81.34 3.87

Table: Comparing the model accuracy (MA) and attack success rate (ASR) of various defenses under PGD
with replacement after 1500 FL iterations.
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Effectiveness of DataDefense
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(a) Poison points detected over FL. (b) Client Importance difference be-
iterations tween attacker and other honest clients

Figure: (a) Percent of detected poison points in D_d showing the effectiveness of y. (b) Analysis of client
importance showing the effectiveness of 8 under PGD with model replacement attack for CIFAR-10 Southwest



Sensitivity of DataDefense

Experiments Values MA (%) ASR (%)
0% 84.53 3.06
Incorrectly marked 5% 84.41 4.08
images in D¢jcan 10% 84.48 3.06
15% 84.47 2.04
Fraction of poisoned O o 2:10
. Lk 0.2 84.47 2.04
points to be detected 03 R4 44 11.22
B) 0.5 8439 12.24

Table: Sensitivity of DataDefense on D

Trigger Patch dataset.

clean

and B under PGD with model replacement attack for CIFAR-10
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Conclusion

e We propose DataDefense to defend against edge-case attacks in Federated Learning.

e Our method does a weighted averaging of the clients' updates by learning weights for the client
models based on the defense dataset.

e We learn to rank the defense examples as poisoned, through an alternating minimization
algorithm.

e The results are found to be highly convincing and emerged as a useful application for
defending against backdoors in Federated Learning.
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Poisoned Data Detector

Input:
D, : Defense dataset with both clean and poisoned samples.
D_..,: Subset of D  that are known to be clean.

clea
B : Fraction of poisoned points to be detected from D,

Architecture of PDD

hi(x) = FE(x); ha(x|) = ReLU(W1ihi(x))
§(x|y) = Soft(Waha(x)); 91(z,y|lv) = ReLU (Ws[y(x), y])
g2(z,ylY) = Wagi(z,y);  v((z,y)|v) = Norm(gz2(z,y), Da)

min = min  ga(xi, ¥i); mar = max _ g2(xi, yi)
(zi,y;)€EDg (i,y;)€EDg

(g2(x,y) — min
Norm(g2((x,y), Da)) = P )_ — ), V(x,y) € Da



Poisoned Data Detector

" =argmin D (@i y):¢) — (25, 55): %)
(wzﬁy’i) € Dcican
(xj7yj) S (Dd \ Dclean)

Calculate v, . o4(% v, W)

Partition D, into D,. and de
Sorty, i € D, in decreasing order of magnitude.

de: High scoring B percent images considered as poisoned, the remaining as clean D,.
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Client Feature Calculator

Average cross-entropy loss of the client model on the clean defense dataset
ch(¢]) = ﬁ]- Z(mvy)eDdc l(l', y) ¢])

Average cross-entropy loss of the client model on the poisoned defense dataset
fjdp(ng) = m Z(a},y)ede l(.fU, y) ¢J>)

L2-distance of the client model from the current global model

dist(¢;) = |5 — ¢ll2

5(¢j) = [Lac(®;), Lap(¢;), dist(¢;)]
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Client Importance Model and Learner

Client Importance model
ReLu(6T's;)
C((bj; 0) - M .
S, ReLu(67s;)

Calculate the global model
ét = t 1 +ZC ¢]7 _ (0))

Compute loss usmg the updated global model
le((x,y); ¢) = —log(f (ylx, $))
lp((z,9);¢) = —log(1 — f(y|z, d))

Lo(0|Dac, Dap) = > Le((z,9): 8(0)) + > L((2,y);

(z,y)ED g4, (z,y)E€Dgp

Update client importance model parameter 6
0t = 071 — aVeLle
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Poisoned Data Detector Learner

Calculate the cost function

V(4| Da, 6(8)) =) (( p((2,);

(w y)EDy

) — le((z,9); 0))

‘®~I

Update PDD parameter W
Pt ="t =V V(| Dy, @)



