

EXPLORA: EFFICIENT EXEMPLAR SUBSET Selection for Complex Reasoning Kiran Purohit¹, Venktesh V², Raghuram Devalla¹, Krishna Mohan Yerragorla¹, **Delft University of Technology** Sourangshu Bhattacharya 1 , Avishek Anand 2

¹CNeRG Lab, Indian Institute of Technology Kharagpur, ²TU Delft

The Big Question

- How Can We Tackle **Complex Reasoning** Across Text and Hybrid Sources?
- Can **In-Context Learning** Unlock the Power of Large Language Models?
- What's the Secret to Boosting ICL

PROMPT TEMPLATE	
struction	λ
ou are a helpful assistant helping to solve tasks requiring reasoning. Sollow given examples and solve the problem in step by step manner.	
xemplar	Response
uestion]: The average age of three boys is 45 years and their ages e in proportion 3:5:7. What is the age in years of the youngest boy?	[Explanation]: (x0+x1+x14)/15 = 40
xplanation]: 3x + 5x + 7x = 45, x =3, 3x = 9	LLM new_mean = 40 + 10 = 50 [Answer]: The answer is 50
answer]: The answer is 9	
uery	

Prompting Ingredients for ICL

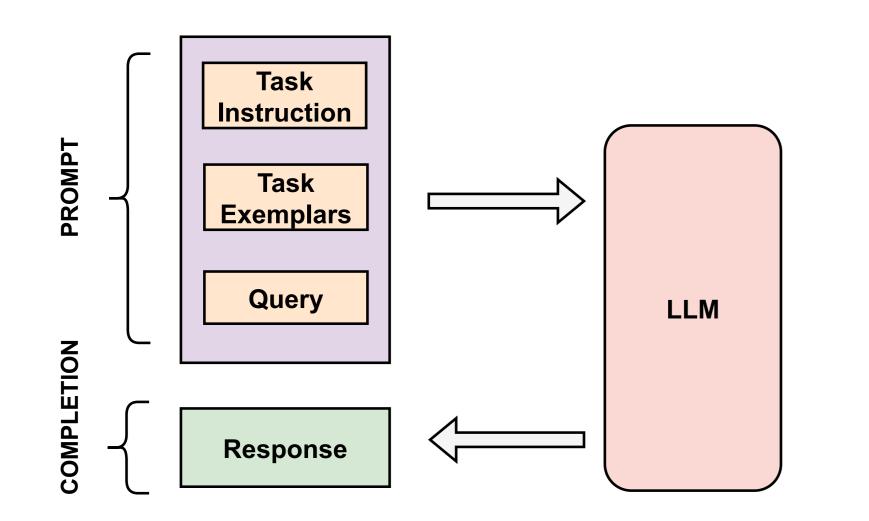
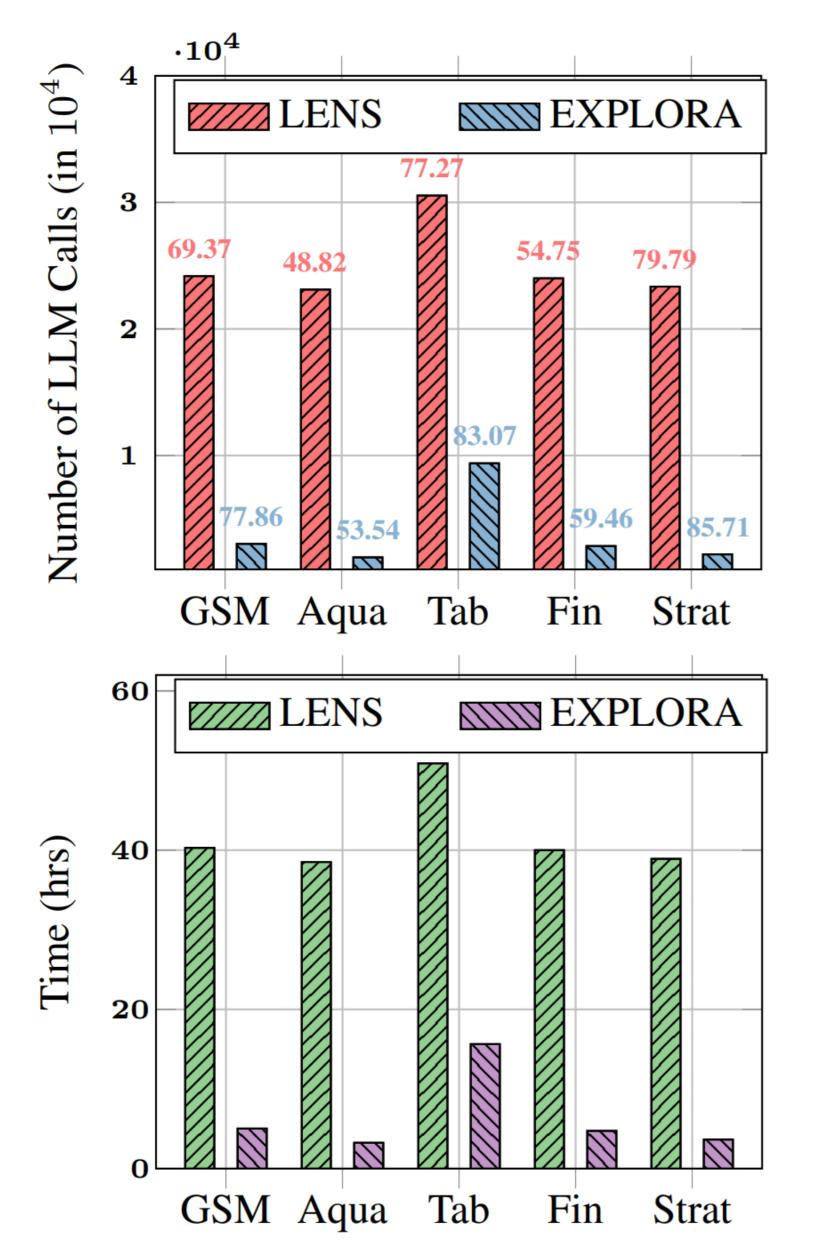


Figure 1: Block Diagram of ICL

LLM Calls and Runtime Comparison



[Question]: John found that the average of 15 numbers is 40. If 10 is added to each number then the mean of the number is?

Figure 2: LLM is provided with a prompt that includes <Question-Explanation-Answer> triplet referred to as exemplars.

EXPLORA: Our Approach

Static exemplar subset selection method for black-box language models without access to its parameters. • Scoring Function (σ): Linear function for approximating validation loss based on similarity features between exemplars and validation examples.

$$\sigma(\vec{\alpha}, S) = \frac{1}{m} \sum_{j=1}^{m} \sum_{i=1}^{n} \alpha_i \mathbb{I}(x_i \in S) E_{ij}$$
(1)

2 Sampling-Based Bandit Algorithm: Efficiently learns parameters (α) of σ to identify top-l exemplar subsets. α is computed by minimizing the following loss function:

$$\mathcal{L}(\vec{\alpha}; U_t, V_t) = \sum_{S \in U_t} (L(S, \mathcal{V}) - \sigma(\vec{\alpha}, S))^2 + \sum_{S' \sim V_t} (L(S', \mathcal{V}) - \sigma(\vec{\alpha}, S'))^2$$
(2)

Exemplars

p₁: While purchasing groceries ram bought 5 apples ... p₂: Ephraim has two machines that make necklaces ...

Approx. error based parameter update

Figure 4: (Top) **LLM calls** LENS vs EXPLORA (y-axis) with corresponding EM scores indicated on top of bars. (Bottom) **Runtime** comparison LENS vs EXPLORA.

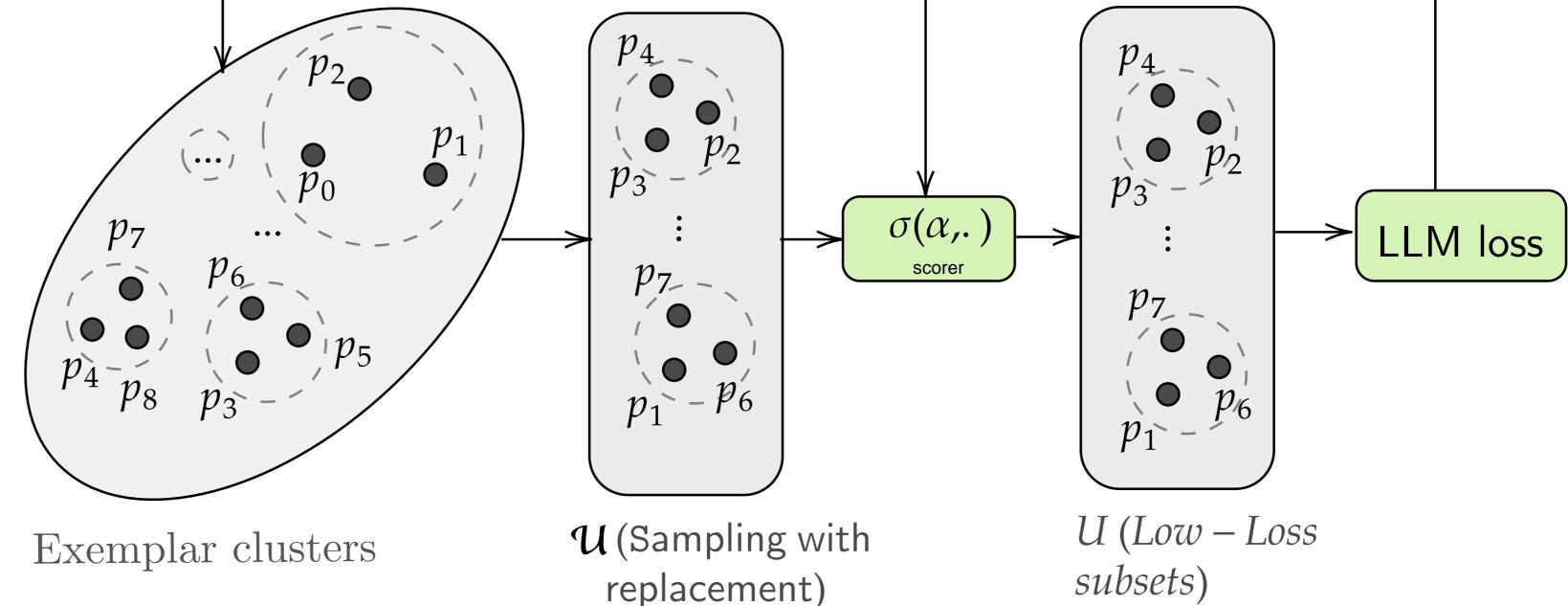


Figure 3: Overview of EXPLORA: In each round, parameters of scoring function $\sigma(\alpha, .)$ are computed by minimizing the loss function (2). σ guides the selection of the subset from $\mathcal{U} \setminus U$ with the lowest loss, which is then used to update U. This iterative updating process ensures U maintains low-loss subsets, leading to a more accurate estimation of α in subsequent rounds.

Performance Comparison

Method	GSM8K	AquaRat	TabMWP	' FinQA	StrategyQA
dynamic					
KNN	53.45	51.96	77.07	51.52	81.83
MMR	54.36	51.18	77.32	49.87	82.86

Key Contributions

 \checkmark Proposed a novel top-*l* exemplar-subset selection approach, using a scoring function $\sigma(\alpha, .)$. ✓ Introduced a novel sampling-based bandit algo for efficiently learning the parameters of σ .

For Further Information

https://github.com/kiranpurohit/EXPLORA

Twitter

static					
Manual Few-Shot COT	73.46	44.88	71.22	52.22	73.06
GraphCut	66.19	47.24	60.45	52.31	80.00
FacilityLocation	68.61	48.43	67.66	36.79	81.63
LENS	69.37	48.82	77.27	54.75	79.79
EXPLORA	77.86	53.54	83.07	59.46	85.71

Table 1: Results across datasets in transfer setting using gpt-3.5-turbo with exemplars selected from Mistral-7b.

- EXPLORA outperforms both static and dynamic exemplar selection methods.
- Exemplars selected using smaller LLMs transfer well to larger LLMs.
- Significantly reduces LLM calls to $\sim 11\%$ of LENS and also reduces running time.
- Achieves substantial performance improvement of 12.24% to LENS

