7th International Conference on Mathematics and Computing (ICMC 2021)

COVID-19 Detection on Chest X-Ray and CT Scan Images Using Multi-image Augmented Deep Learning Model

Kiran Purohit, Abhishek Kesarwani, Dakshina Ranjan Kisku, Mamata Dalui

Department of Computer Science & Engineering National Institute of Technology Durgapur Durgapur - 713209, West Bengal, India

Outline

- 1. Motivation
- 2. Problem Definition
- 3. Methodology
 - 3.1. Hybrid filter generation
 - 3.2. Multi-image representation
 - 3.3. Training and classification of CNN based deep learning model
- 4. Results and Analysis
- 5. Conclusion
- 6. References

Motivation

- COVID-19 is an infectious disease which has so far infected millions of people and deaths are increasing day by day.
- The RT-PCR test for COVID-19 takes hours to give the results.
- Sometimes the test gives false positive results.
- In highly affected regions, it is difficult to provide sufficient number of test kits for testing COVID-19 infection.
- To re-confirm the outcome of the RT-PCR test of a suspect, X-Ray or/and CT scan would be an added advantage to have a more accurate result on detection of COVID-19.
- Therefore, to test COVID-19 rapidly and in a efficient way, chest X-Ray or CT scan images of the suspects are used.

Problem Definition

- To detect COVID-19 on chest X-Ray and CT Scan images of suspected individuals.
- To develop a model which uses CNN fused with the image processing based data augmentation.
- To resolve the issue of smaller number of images for training the deep-model.
- To increase the data by using multiple representations of the same X-Ray and CT scan images, produced through sharpening filters.

Methodology

- Hybrid filter generation
- Multi-image representation
- Training and classification of CNN based deep learning model

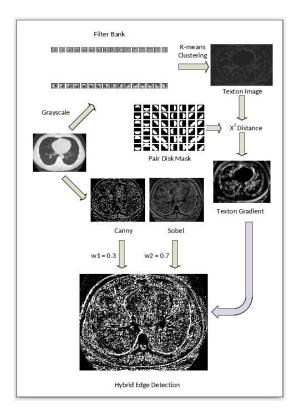


Fig 1: Design process of Hybrid Edge Detector

Data Augmentation using Image Processing consists of the following steps:

Step 1: Accept the coloured input image from the data set.

Step 2: Convert the image into grayscale.

Step 3: Histogram Equalization is initiated to correct the contrast of the given grayscale input image.

Step 4: Find edges by applying edge detection operators, viz. Sobel, Prewitt, Roberts, Scharr, Laplacian, Canny, and Hybrid (combination of Canny and Sobel edge detector).

Step 5: Mix the result obtained after applying Edge Detection Operators to the data set.

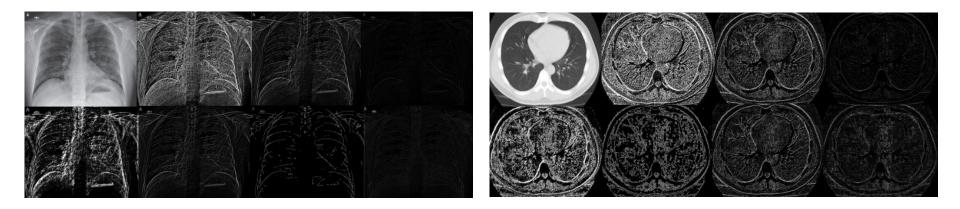
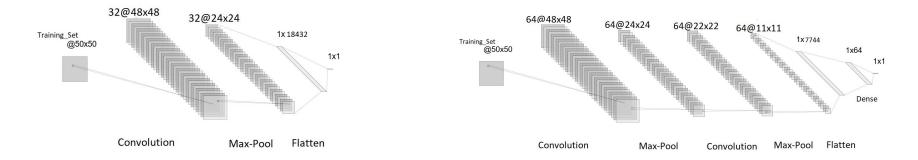



Fig 2: Multiple Representations of chest images of X Ray and CT Scan of Covid infected person

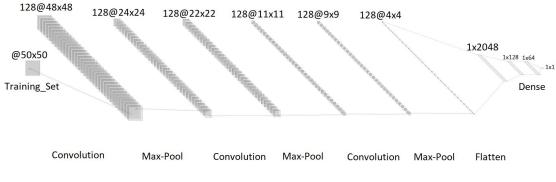


Fig 3: Convolutional Neural Network of Layer Size 32, 64 and 128.

Model Used

- Deep CNN model
- Ratios applied for training & testing 90:10, 80:20, 70:30 and 60:40.
- Optimizer Used- SGD, batch size- 32, epochs- 30, loss function- binary cross entropy
- Activation function- Relu after Convolution, Sigmoid for classification
- Dense layers=[0,1,2], layer sizes=[32,64,128], conv layers=[1,2,3]

Performance Metric

Accuracy, Loss, AUC, Precision, Sensitivity, Specificity and F1 score.

Database Description

- X-Ray database(Augmented)- 536 Covid, 536 non-Covid images
- CT Scan database(Augmented)- 2760 Covid, 2760 non-Covid images

Results and Analysis

	CT Scan Images						X-Ray Images					
	P	ropose	d	Resnet	VGG	P	ropos	ed	Resnet	VGG		
${f Train-Test}$	Layers					Layers						
70%-30%	32	64	128	50	16	32	64	128	50	16		
Accuracy (%)	95.05	95.38	92.46	89.02	88.99	98.97	99.44	98.69	90.76	92.26		
Loss (%)	19.44	26.97	37.33	52.16	35.49	7.4	1.91	8.05	48.19	17.81		
AUC (%)	97.8	98.4	97.2	89	93.4	99.7	100	99.6	90.8	92.3		
Precision	0.96	0.96	0.95	0.9	0.9	0.99	1	0.99	0.99	0.99		
Sensitivity (%)	93.64	94.78	89.38	87.71	87.83	99.07	99.07	98.33	82.27	85.82		
Specificity (%)	96.48	95.98	95.54	90.32	90.14	98.88	99.81	99.06	99.25	98.69		
F1 Score	0.95	0.95	0.92	0.89	0.89	0.99	0.99	0.99	0.9	0.92		
80%-20%	32	64	128	50	16	32	64	128	50	16		
Accuracy (%)	96.47	96.99	95.45	92.75	91.16	99.07	98.88	99.16	96.18	93.1		
Loss (%)	13.79	16.39	21.58	31.42	26.25	7.63	5.18	4.87	20.58	17.35		
AUC (%)	98.6	99	98.2	92.7	97.1	99.5	99.7	99.8	96.2	93.1		
Precision	0.96	0.97	0.95	0.94	0.96	0.99	0.99	0.99	0.99	0.97		
Sensitivity (%)	96.73	97.39	95.83	90.83	86.38	99.25	99.25	99.44	92.91	88.99		
Specificity (%)	96.2	96.6	95.07	94.65	95.94	98.88	98.52	98.89	99.44	97.2		
F1 Score	0.96	0.97	0.95	0.93	0.91	0.99	0.99	0.99	0.96	0.93		
				-	-				+			

Table 1: Results of proposed model with Data Augmented images along with ResNet-50 and VGG-16 using CT Scan and X-Ray images for train-test ratio- 70:30 and 80:20.

• We can see that proposed model with Data Augmented images outperforms other models like Resnet 50, VGG 16 in both CT Scan and X-Ray images.

Results and Analysis (Cont.)

	Original						Augmented						
	CT Scan Images			XF	X Ray Images			CT Scan Images			X Ray Images		
Train-Test	Layers			Layers			Layers			Layers			
70%-30%	32	64	128	32	64	128	32	64	128	32	64	128	
Accuracy (%)	89.57	92.03	90.29	98.25	97.1	97	96.05	96.38	95.46	98.97	99.44	98.69	
Loss (%)	29.79	26.81	50.84	5.21	12.09	2.22	19.44	26.97	37.33	7.4	1.91	8.05	
AUC (%)	94.8	95.9	95.7	100	99.8	100	97.8	98.4	97.2	99.7	100	99.6	
Precision	0.91	0.93	0.87	0.99	0.99	0.99	0.96	0.96	0.95	0.99	0.99	0.99	
Sensitivity (%)	87.25	91.01	95.07	100	94.03	100	93.64	94.78	89.38	99.07	99.07	98.33	
Specificity (%)	91.88	93.04	85.51	98.51	100	100	96.48	95.98	95.54	98.88	99.81	99.06	
F1 Score	0.89	0.92	0.91	0.99	0.97	0.99	0.95	0.95	0.92	0.99	0.99	0.99	

Table 2: Results of proposed models with Original images and Data Augmentation with CT Scan andX-Ray images datasets for train-test ratio-70:30

- We can see that after augmentation we achieved higher accuracy compared to the original dataset.
- Our model exhibits higher classification accuracy around 95% and 99% for CT scan and X-Ray images respectively.

Results and Analysis (Cont.)

Study Images		Subjects	Methodology	Accuracy (%)	
Hemdan et al. [6]	X Ray	Covid 19(+ve) - 25 Normal(25)	CovidX Network	90	
Wang and Wong [15]	X Ray	Covid 19(+ve) - 53 Healthy(8066) Covid 19(-ve) - 5526	Covid Network	92.4	
Ghoshal et al. $[5]$	X Ray	Covid 19(+ve) - 25 Others - #Not available	CNN	92.9	
Ioannis et al. [1]	X Ray	Covid 19(+ve) - 224 Healthy(504) Pneumonia(700)	VGG-19 Network	93.48	
Murugan & Goel [8]	X-Ray	Covid 19(+ve) - 900 Healthy(900) Pneumonia(900)	E-DiCoNet	94.07	
Sethy et al. [12]	X Ray	Covid 19(+ve) -25 Covid 19(-ve) - 25	ResNet 50 and SVM	95.38	
Narin et al. [9]	X Ray	Covid 19(+ve) - 50 Covid 19(-ve) - 50	ResNet-50 and Deep CNN	98	
Tulin et al. [10]	X Ray	No Findings - 500 Covid 19(+ve) - 125 Pneumonia(500)	$\operatorname{DarkCovidNet}$	98.08	
Wang et al. [16]	CT Scan	Covid 19(+ve) - 195 Covid 19(-ve) - 258	M-Inception	82.9	
Ying et al. [13]	CT Scan	Healthy(708) Covid 19(+ve) - 777	DRE-Net	86	
Xu et al. [17]	CT Scan	Healthy(175) Covid 19(+ve) - 219 Viral pneumonia(224)	Location Attention $+$ ResNet	86.7	
Zheng et al. [18]	CT Scan	$\begin{array}{c c} Covid 19(+ve) - 313 \\ \hline Covid 19(-ve) - 229 \end{array} 3D Deep Network + UN$		90.8	
Pathak et al. [11]	CT Scan	Covid 19(+ve) - 413 Normal(439)	Fine-tuned ResNet32	93.01	
Chen et al. [3]	CT Scan	Covid 19(+ve) - 51 Others(55)	UNet++ Network	95.2	
Proposed Method	X ray	Covid 19(+ve) - 536 Covid 19(-ve) - 536	Multi image augmentation $+$ CNN	99.44	
	CT Scan	Covid 19(+ve) - 2760 Covid 19(-ve) - 2760		95.38	

Table 3: Comparison among various Covid 19 detection techniques based on deep learning

Conclusion

- To make the model learn about the patterns more effective, multiple representations of the X-Ray and CT scan images are produced using sharpening filters.
- This augmentation technique provides a sufficient number of examples for training the model. Hence makes the model robust.
- We obtained the classification accuracies of 99.44% for X-Ray images and 95.38% for CT Scan images.
- Our model overcomes the issues of shortage of test kits, minimizes the cost of testing, easy to use by diagnostic and medics persons, and can be used for rapid testing.

References

- 1. Apostolopoulos, I.D., Mpesiana, T.A.: Covid-19: automatic detection from x-ray images utilizing transfer learning with convolutional neural networks. Physical and Engineering Sciences in Medicine p. 1 (2020)
- 2. Chandra, T.B., Verma, K., Singh, B.K., Jain, D., Netam, S.S.: Coronavirus disease (covid-19) detection in chest x-ray images using majority voting based classifier ensemble. Expert systems with applications 165, 113909 (2020)
- 3. Chen, J., Wu, L., Zhang, J., Zhang, L., Gong, D., Zhao, Y., Hu, S., Wang, Y., Hu, X., Zheng, B., et al.: Deep learning-based model for detecting 2019 novel coronavirus pneumonia on high-resolution computed tomography: a prospective study. MedRxiv (2020)
- 4. Cohen, J.P., Morrison, P., Dao, L.: Covid-19 image data collection. arXiv 2003.11597 (2020), https://github.com/ieee8023/covid-chestxray-dataset
- 5. Ghoshal, B., Tucker, A.: Estimating uncertainty and interpretability in deep learning for coronavirus (covid-19) detection. arXiv preprint arXiv:2003.10769 (2020)
- 6. Hemdan, E.E.D., Shouman, M.A., Karar, M.E.: Covidx-net: A framework of deep learning classifiers to diagnose covid-19 in x-ray images. arXiv preprint arXiv:2003.11055 (2020)
- Kesarwani, A., Purohit, K., Dalui, M., Kisku, D.R.: Measuring the degree of suitability of edge detection operators prior to an application. In: 2020 IEEE Applied Signal Processing Conference (ASPCON). pp. 128–133 (2020). https://doi.org/10.1109/ASPCON49795.2020.9276678
- 8. Murugan, R., Goel, T.: E-diconet: Extreme learning machine based classifier for diagnosis of covid-19 using deep convolutional network. Journal of Ambient Intelligence and Humanized Computing pp. 1–12 (2021)
- 9. Narin, A., Kaya, C., Pamuk, Z.: Automatic detection of coronavirus disease (covid-19) using x-ray images and deep convolutional neural networks. arXiv preprint arXiv:2003.10849 (2020)

References (Cont.)

- 10. Ozturk, T., Talo, M., Yildirim, E.A., Baloglu, U.B., Yildirim, O., Acharya, U.R.: Automated detection of covid-19 cases using deep neural networks with x-ray images. Computers in Biology and Medicine p. 103792 (2020)
- 11. Pathak, Y., Shukla, P.K., Tiwari, A., Stalin, S., Singh, S.: Deep transfer learning based classification model for covid-19 disease. Irbm (2020)
- 12. Sethy, P.K., Behera, S.K.: Detection of coronavirus disease (covid-19) based on deep features. Preprints 2020030300, 2020 (2020)
- 13. Song, Y., Zheng, S., Li, L., Zhang, X., Zhang, X., Huang, Z., Chen, J., Zhao, H., Jie, Y., Wang, R., et al.: Deep learning enables accurate diagnosis of novel coronavirus (covid-19) with ct images. medRxiv (2020)
- Szegedy, C., Liu, W., Jia, Y., Sermanet, P., Reed, S., Anguelov, D., Erhan, D., Vanhoucke, V., Rabinovich, A.: Going deeper with convolutions. In: Proceedings of the IEEE conference on computer vision and pattern recognition. pp. 1–9 (2015)
- 15. Wang, L., Wong, A.: Covid-net: A tailored deep convolutional neural network design for detection of covid-19 cases from chest x-ray images. arXiv preprint arXiv:2003.09871 (2020)
- 16. Wang, S., Kang, B., Ma, J., Zeng, X., Xiao, M., Guo, J., Cai, M., Yang, J., Li, Y., Meng, X., et al.: A deep learning algorithm using ct images to screen for corona virus disease (covid-19). MedRxiv (2020)
- 17. Xu, X., Jiang, X., Ma, C., Du, P., Li, X., Lv, S., Yu, L., Ni, Q., Chen, Y., Su, J., et al.: A deep learning system to screen novel coronavirus disease 2019 pneumonia. Engineering (2020)
- 18. Zheng, C., Deng, X., Fu, Q., Zhou, Q., Feng, J., Ma, H., Liu, W., Wang, X.: Deep learning-based detection for covid-19 from chest ct using weak label. medRxiv (2020)

Thank You

