
A Greedy Hierarchical Approach to
Whole-Network Filter-Pruning in CNNs

Kiran Purohit, Anurag Parvathgari and Sourangshu Bhattacharya

Dept. of Computer Science & Engineering
IIT Kharagpur

Introduction

2

Introduction

Network Pruning
Given a pre-trained network Φ(.), the goal is to compress the network while maintaining the high
performance as much as possible by removing the unnecessary parameters.

Pre-trained original network Φ(.) Final pruned network Φ’(.)

3

Network Pruning

Weights or Node
Pruning

❖ Pruning applied to early DNN
❖ Check the importance of each weight or node
❖ Practical acceleration could not be achieved

Filter or Channel
Pruning

❖ Widely used for modern CNNs
❖ Remove the entire filter or channel at once
❖ Helps the practical acceleration of the network

4

Filter Pruning

Non-Uniform Pruning

5

Uniform Pruning

❖ Prune filters uniformly from each layer
❖ Process each layer independently and

sequentially.

❖ Prune different fractions of filters from each layer
❖ All the layers in the network collectively make the

final prediction

● We developed faster non-uniform pruning methods.
●
● We used a hierarchical scheme with two-levels:
●

○ filter pruning - this step identifies the most appropriate filters to be pruned from each layer.
○ layer selection - this step selects the best layer to currently prune from.

We apply these two steps iteratively to achieve a non-uniform pruning.

6

Contribution

Related Work

Thinet “ThiNet: A Filter Level Pruning Method for Deep Neural Network Compression” ICCV 2017

❖ Removes each channel one-by-one, and record the output feature map difference at each step.
❖ Selects the channel with the lowest difference.
❖ Greedy way of selecting channel.

7

Related Work

FPGM “Filter Pruning via Geometric Median for Deep Convolutional Neural Networks
Acceleration” CVPR 2019

❖ Traditionally the filter weight, with small norm was regarded as less important filter.
❖ FPGM presents that filter with median norm is less important and can be removed

8

Related Work

LFPC “Learning Filter Pruning Criteria for Deep Convolutional Neural Networks Acceleration”
CVPR 2020

❖ Existing methods usually utilize pre-defined pruning criteria, such as ℓp-norm, to prune unimportant filters from each layer.
❖ LFPC adaptively select the appropriate pruning criteria for different layers.

9

Related Work

LRF “Linearly Replaceable Filters for Deep Network Channel Pruning” AAAI 2021

❖ LRF suggests that we can replace the filter that can be approximated by the linear combination of other filters

10

Related Work

❖ In a layer, we can approximate each filter as a linear combination of the other filters

Here, 𝜖 = approximation error and 𝜆j,l = weight coefficient of the respective filters

❖ Each 𝜆j,l can be found by solving following minimization problem

 Remove the ith filter with the smallest ||𝜖i|| 11

12

FP-OMP for Pruning Multiple Filters

We develop an Orthogonal Matching Pursuit (OMP) based algorithm for selecting retained filters of a layer into S.
Hence filters that are to be pruned are {1,2,...n} \ S.

We can approximate the pruned filters in terms of retained filters.

We pose a sparse approximation problem for finding S and 𝜆

where S is the set of the selected/retained filters in a layer, n is the total number of filter in that layer, and 𝛽 is the pruning fraction

13

Weight Compensation

❖ Before we prune a layer, we add 1x1
convolutional layer at the top and bottom.

❖ When we prune a filter, we modify the
weight value of 1x1 convolutional layer
appropriately.

❖ Then the loss change can be further
reduced.

14

Weight compensation for multiple filter pruning

LRF had proposed the weight compensation module, for a single filter pruning, for two purposes:

● The difference in output feature map of the pruned and unpruned layer will get adjusted by the updation
of weights of the 1𝑥1 convolution.

● Usage of 1𝑥1 convolution enables the pruning of any network, regardless of its architecture.

We adopt this module and derive the compensated weights as per our framework for multiple channel pruning.

For the output channel pruning,

For the input channel pruning,

15

FP-Backward for Filter Pruning

16

Backward Elimination
One Iteration

Column RemovedWeight Matrix

17

 E(A,B): the total least square error

Note that only the second term in E(A, B) is dependent on A

For a given layer with n output channels, m input channels, and K × K filter size,
B: matrix of predicted filter weights.
A: matrix of retained filter weights.
B ≈ Aλ

18

A-k: matrix A without the column ak.
Πk : permutation matrix which permutes the columns of A so that kth column is the last.

We compute (ATA)-1 and (ATA)-1AT for further purposes.

FP-Backward

19

HBGS for Layer Selection

20

Un-Pruned Layer

Pruned Layer

We want to
minimise the
difference b/w
the output
feature maps of
pruned and
unpruned layersInput Image

● We develop Hierarchical Backward Greedy Search (HBGS) for selecting the best layer to currently prune from.
●

● Key idea here is to calculate the relative reconstruction error between the pruned layer output and unpruned layer output
○

○ and then finally choose the layer with minimum error to currently prune from.

HBGTS for Layer Selection

● We develop Hierarchical Backward Greedy Tree Search (HBGTS) for selecting the best layer to currently prune from.
●

● Key idea here is to calculate the error in final layer output, if layer j ∈ {1, ..., C} is pruned
○

○ and then finally choose the layer with minimum error to currently prune from.

21

Input
Image

Layer-1 Layer-2 Layer-3

.

(0)

(0)
(0)

(1)

(0)

(2)

(0)

(0)

(1)

Classification
Layer

.

.

.

Layer (2) Pruned

Layer (1) Pruned

(0) - No Pruning

Layer (3) Pruned

Un-Pruned
Layer

Pruned
Layer

Pruned
Layer

Un-Pruned
Layer

Un-Pruned
Layer

Pruned
Layer

Experimental Results
Experimental Setting

Model Used

● ResNet-18, Resnet-32, Resnet-56, VGG-16
● Optimizer Used- SGD, batch size- 128, loss function- cross entropy loss, 1 epoch fine tune after

pruning one layer and 300 after complete pruning
● Activation function- Relu

Performance Metric

Pruned Accuracy, Accuracy Drop, Parameters Drop, FLOPs Drop, Total Time taken for Pruning and Fine
Tuning

Database Description

● CIFAR-10 - 10 Classes, 50k training images, 10k test images
● CIFAR-100 - 100 Classes, 50k training images, 10k test images
● Tiny Imagenet - 200 Classes, 0.1M images

22

Results and Analysis

Table: Performance comparison between different pruning methods on VGG16/CIFAR100 at 98% parameter
reduction and ResNet18/CIFAR10 at 95% parameter reduction

● We can clearly see that our methods outperform other pruning algorithms.
● The drop in params and flops is equivalent or more compared to other methods

23

Table: Comparison of pruning methods for ResNext101 32x16d (RN16) and a similar sized dense ResNext101 32x8d (RN8)
on CIFAR10 at 98% parameter reduction.

● Our backward method can be used for effectively pruning large models that exceed the capacity of commodity GPUs.
● ResNext101 32x16d has 193 M parameters and requires 7.62 GB of GPU memory for loading.
● We can efficiently deploy the pruned model on edge devices with GPU memory less than 2GB.

24

Results and Analysis (Cont.)

Results and Analysis (Cont.)

25

Figure: Test accuracy for (a) ResNet56/CIFAR100 (b) VGG16/CIFAR100 and (c) ResNet18/Tiny-Imagenet with
increasing parameter reduction

● We can clearly see that our methods outperform other pruning algorithms.
● As the percentage of parameter reduction increases, the difference in test accuracy between our proposed

methods and state-of-the-art methods also grows.

Results and Analysis (Cont.)

Figure: Visualisation of output feature map of ResNet32 2nd layer (top row) and 10th layer (bottom row) on CIFAR100

❖ Feature map of Layer 2 has a diverse set of filter outputs, indicates its usefulness in capturing different
features of the inputs. Our HBGTS-B prunes only 31.25% of its filters.

❖ Feature map outputs of Layer 10 looks very similar, denoting its redundancy in filter outputs. 93.75% of
its filters are removed by our HBGTS-B method.

26

Results and Analysis (Cont.)

27

Figure: Heat map for relative reconstruction error and pruning percentage while pruning ResNet32 on CIFAR100 at
63% parameter reduction.

● Pruning percentage increases with each round, but not uniformly.
● Relative reconstruction error also decreases with pruning rounds but is not uniform across layers.
● Our method selects the layer with the least relative reconstruction error for pruning.

28

Results and Analysis (Cont.)

Figure : Time comparison on ResNet/CIFAR10 at 63% parameter reduction.

Conclusion

● We proposed a hierarchical scheme with two-levels for faster non-uniform pruning.
●

● FP-OMP and FP-Backward identifies the most appropriate filters to be pruned from each layer.
●

● HBGS and HBGTS algorithms selects the best layer to currently prune from.

29

References

1. Joo, Donggyu, et al. "Linearly replaceable filters for deep network channel pruning." Proceedings of the AAAI
conference on artificial intelligence. Vol. 35. No. 9. 2021.

2. Tropp, Joel A., and Anna C. Gilbert. "Signal recovery from random measurements via orthogonal matching pursuit."
IEEE Transactions on information theory 53.12 (2007): 4655-4666.

3. Purohit, Kiran, et al. "Accurate and efficient channel pruning via orthogonal matching pursuit." Proceedings of the
Second International Conference on AI-ML Systems. 2022.

4. Reeves, Stanley J. "An efficient implementation of the backward greedy algorithm for sparse signal reconstruction."
IEEE Signal Processing Letters 6.10 (1999): 266-268.

30

THANK YOU
FOR

YOUR ATTENTION!!!

https://github.com/kiranpurohit/

@kiranpurohit08

31

https://github.com/kiranpurohit/
https://twitter.com/kiranpurohit08

