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Federated Learning
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Backdoor Attacks

▸ Subtype of data poisoning
▸ Images with certain features are labeled differently
▸ Backdoor features can be artificial or natural
▸ Overall classification accuracy remains the same 



Motivation

● State-of-the-art defense techniques [2] fail to defend FL against backdoors. 
● Wang et al. [5] concluded that no fixed defense rule can stop the backdoor attacks on 

federated learning system.
● So, it becomes a necessity to develop robust defense techniques which can defend FL against 

backdoors.
● This motivates us to ask the following research question:

Can an unlabelled mix of both clean and poisoned datapoints help us in learning a defense 
against the latest attacks ?
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Problem Definition

● To design and develop a robust defense called LearnDefend in order to defend FL against 
backdoors.

● To check the effectiveness of the learned defense against the backdoors.
● To compare the learned defense with SOTA defenses[2] against backdoors in FL.
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Overview of LearnDefend
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Figure: Overview of the LearnDefend
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Figure: Overview of the LearnDefend
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Figure: Overview of the LearnDefend
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Figure: Overview of the LearnDefend
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Figure: Overview of the LearnDefend
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Figure: Overview of the LearnDefend
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Experimental 
Results 



Experimental Setup
❖ Dataset used - CIFAR-10

❖ Model Used - VGG-9

❖ Total number of participants/clients: K =200 

❖ Number of participants selected per round: m = 10

❖ Clients train dataset:  To simulate non-i.i.d training data, we divided 50,000 CIFAR-10 train images 
heterogeneously to 200 clients.

❖ Defense Dataset (Dd) →500 samples (400 clean + 100 backdoored), 
Dclean = 100 clean samples from Dd (20%)

Performance Metric

Main Task Accuracy is calculated on 10000 CIFAR10 test set images.
Target Task/Backdoor Accuracy is calculated on 196 Backdoored images.
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Results and Analysis 

Table 1: Comparing the Main task and Backdoor accuracy of various defenses under PGD with replacement 
after 1500 FL iterations.

● We can see that LearnDefend has lower backdoor accuracy compared to other defenses for both the 
datasets.
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Conclusion

● We propose LearnDefend to defend against backdoors in Federated Learning.
● Our method does a weighted averaging of the clients' updates by learning weights for the client 

models based on the defense dataset.
● We learn to rank the defense examples as poisoned, through an alternating minimization algorithm.
● The results are found to be highly convincing and emerged as a useful application for defending 

against backdoors in Federated Learning.
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