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Federated Learning
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Backdoor Attacks

»  Subtype of data poisoning

» Images with certain features are labeled differently
»  Backdoor features can be artificial or natural
»  Overall classification accuracy remains the same
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Motivation

e  State-of-the-art defense techniques [2] fail to defend FL against backdoors.

e Wang et al. [5] concluded that no fixed defense rule can stop the backdoor attacks on
federated learning system.

e So, it becomes a necessity to develop robust defense techniques which can defend FL against
backdoors.

e This motivates us to ask the following research question:
Can an unlabelled mix of both clean and poisoned datapoints help us in learning a defense
against the latest attacks ?
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Problem Definition

e To design and develop a robust defense called LearnDefend in order to defend FL against
backdoors.
To check the effectiveness of the learned defense against the backdoors.
To compare the learned defense with SOTA defenses[2] against backdoors in FL.
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Overview of LearnDefend
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Figure: Overview of the LearnDefend
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Experimental
Results
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Experimental Setup

< Dataset used - CIFAR-10
o Model Used - VGG-9

%  Total number of participants/clients: K =200

< Number of participants selected per round: m = 10

< Clients train dataset: To simulate non-i.i.d training data, we divided 50,000 CIFAR-10 train images
heterogeneously to 200 clients.

< Defense Dataset (D) —500 samples (400 clean + 100 backdoored),
D = 100 clean samples from D (20%)

clean

Performance Metric

Main Task Accuracy is calculated on 10000 CIFAR10 test set images.

Target Task/Backdoor Accuracy is calculated on 196 Backdoored images.
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Results and Analysis

Target Task/
Main Task
Defenses HFEES Backdoor
Accuracy
Accuracy
EDGE CASE
Krum [2] 82.34% 59.69%
Multi-Krum [2] 84.47% 56.63%
Bulyan [3] 84.48% 60.20%
Trimmed Mean [6] 84.42% 63.23%
Median [6] 62.40% 37.35%
LearnDefend 84.49% 15.30%
TRIGGER PATCH
Krum [2] 81.36% 100.00%
Multi-Krum [2] 84.45% 76.44%
Bulyan [3] 84.46% 100.00%
Trimmed Mean [6] 84.43% 44.39%
Median [6] 62.16% 31.03%
LearnDefend 84.47% 2.04%

Table 1: Comparing the Main task and Backdoor accuracy of various defenses under PGD with replacement
after 1500 FL iterations.

e  We can see that LearnDefend has lower backdoor accuracy compared to other defenses for both the
datasets.
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Conclusion

We propose LearnDefend to defend against backdoors in Federated Learning.
Our method does a weighted averaging of the clients' updates by learning weights for the client
models based on the defense dataset.

e  We learn to rank the defense examples as poisoned, through an alternating minimization algorithm.
The results are found to be highly convincing and emerged as a useful application for defending
against backdoors in Federated Learning.
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