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Motivation

e Maximize audience engagements:
o Reachfriends
o Better targeting by brands
o  Schedule campaign

e Personalized schedules vs. infographics



Challenges

e Datasparsity
e Lack of open data sets
e Unique audiences

e Specificity network dynamics




Problem Setting

For a user on social network, find the best time to post a message in order to maximize the
probability of receiving audience reactions.

e Consider only: replies, retweets, favorites, likes, comments.
e Weekly user behaviour cycle

e Observe only first 24hr of reactions

e 15 mintime bucket

e Starting bucket is 00:00-00:15 Monday (relative to user’s timezone)



System Overview

n O\ /’O '~
87, —® Post ‘—bﬂ

User Graph User Actions

processmg ....................................... Q ...................................................

UserinGraph || User OutGraph | | CreationProfite | [ o FOStTO | | Reaction Profie

'
5

Second Degree First Degree
Schedule Schedule

A~ r——




Audience Behaviour



Post To Reaction Analysis

e Inherentdelay
e Different networks have different engagement dynamics

o 50% of first 24h reactions Twitter in 24 min while Facebook in 1h 42 min
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Audience Behaviour - Network
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Audience Behaviour - Location

0.0045

0004 |
0.0035 |
T S
ooos | /4"
o'm .'~~...“"
00015 |-,

Oftsetted Reacton Probabiity

0.006

0.0045 | i A
0,004 bk A\ s
0.0036
0.003 ¢
00025
0002 '

Offsetied Reaction Probabiity

0.0006

o e
Vo s

Facebook

Twitter



Personalized Schedules



Personalized Schedules
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e When does a specific audience
member b, react to the posts
created by a.?

e Whatis the probability that b,
reacts to post in a certain time
bucket t,? |




Personalized Schedules - Twitter Example
?'ime $iries of Twitter User
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Personalized Schedules - Evaluation

Evaluate on:
e 56 daysofunseendata
e 0.5M active users
Baselines for a timezone:

e Most Frequently Used (MFU)
e Aggregate First-Degree (AFD)

Reaction gain of:

e 17% on Facebook
o 4% on Twitter
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Conclusion

e Reaction times are more than 4x faster on Twitter compared to other networks.
e Audience behaviour varies across different networks.
e Users audiences across different cities exhibit different behavior patterns.
e Using personalized schedules users can see reaction gain of up to:
o 17% on Facebook

o 4% on Twitter



