Winning the Lottery Ahead of Time: Efficient Early Network Pruning

John Rachwan, Daniel Zügner, Bertrand Charpentier, Simon Geisler, Morgane Ayle, Stephan Günnemann

> CNeRG Reading Group Presentation (8th June, 2023)

> > Kiran Purohit Akash Ghosh

Why pruning is important?

- Neural networks are highly over-parameterized. Pruning helps to remove unnecessary weights and nodes.
- Pruning can help in reducing model memory, training and inference time, cost and carbon emissions while maintaining model performance.

Network Pruning

Given a pre-trained network $\Phi(.)$, the goal is to compress the network while maintaining the high performance as much as possible by removing the unnecessary parameters.

Final pruned network Φ '(.)

Pre-trained original network $\Phi(.)$

Network Pruning

Unstructured Pruning

- Pruning applied to early DNN
- Check the importance of each weight or node
- Practical acceleration could not be achieved

Structured Pruning

- Widely used for modern CNNs
- Remove the entire filter or channel at once
- Helps the practical acceleration of the network

Existing Methods

Pruned models can be extracted from two ways:

- From a Pre-trained network
- within the original randomly initialized dense model

Existing Methods

- From a Pre-trained network
 - 1. Train the model to convergence.
 - 2. Prune the individual weights of the pre-trained model.
 - 3. Fine-tune the sparse model to convergence.

Drawbacks:

- Training phase is as expensive as training the Dense model
- Weight pruning does not practically make weight matrices smaller

***** Within the original randomly initialized dense model

The Lottery Ticket Hypothesis

A randomly-initialized, dense neural network contains a subnetwork that is initialized such that—when trained in isolation—it can match the test accuracy of the original network after training for at most the same number of iterations.

The Lottery Ticket Hypothesis

Why the term Lottery?

- If you want to win the lottery, just buy a lot of tickets and some will likely win.
- Buying a lot of tickets = having an overparameterized neural network for your task.
- Winning the lottery = training a network with high accuracy.
- Winning ticket = pruned subnetwork which achieves high accuracy.

Identifying Winning Tickets

One-shot pruning

- 1. Randomly initialize a neural network with initial parameters θ_{0}
- 2. Train the network for j iterations, arriving at parameters θ_j 3. Prune p% of parameters in θ_i with lowest magnitude (set them to 0)
- 4. Reset the remaining parameters to their original random initialization in θ_0 , creating the winning ticket

Iterative pruning

- Iteratively repeat the one-shot pruning process (from step 2)
- Yields smaller networks than one-shot pruning

Limitations

- The process of finding these sparse models using iterative pruning is **very expensive**.
 - → Hard to study larger datasets like ImageNet
- □ Unstructured pruning does not provide benefits in terms of **GPU memory**, **training time**, or **carbon emissions**.

Our Method: EarlyCroP

- 1. Train the model for few epochs
- 2. Prune the structured channels of the slightly pre-trained model
- 3. Train the model to convergence.

Training is improved: We operate on a slightly trained networkInference is improved: We perform structured pruning

- Why to prune ? We gain performance improvements by pruning structure layer channels instead of individual weights.
- □ How to prune ? We score and remove channels with the goal of preserving the *Gradient Flow* and *Neural Tangent Kernel*.
- When to prune ? We prune the network during training when we detect the transition from *rich active* to *lazy kernel regime*.

Why to Prune?

Pruning leads to a sparse model that provides improvements in terms of time, memory and carbon emissions.

How to Prune?

Background:

Neural Tangent Kernel (NTK):

 $\mathsf{NTK}(\theta) = \mathsf{g}_{\mathsf{Y}}(\boldsymbol{\Theta}_{\mathsf{t}})^{\mathsf{T}}\mathsf{g}_{\mathsf{Y}}(\boldsymbol{\Theta}_{\mathsf{t}})$

where $g_{Y}(\Theta_{t})$ denotes the gradient of the model prediction Y with respect to the model parameters Θ_{t} .

> It describes the dynamics of the network's prediction during training.

Gradient flow (GF):

 $\mathsf{GF}(\theta) = \mathsf{g}_{\mathsf{L}}(\boldsymbol{\Theta}_{\mathsf{t}})^{\mathsf{T}}\mathsf{g}_{\mathsf{L}}(\boldsymbol{\Theta}_{\mathsf{t}})$

where $g_{\mu}(\Theta_{t})$ denotes the gradient of the model loss L with respect to the model parameters Θ_{t} .

> It describes the dynamics of the gradient norm during training.

How to Prune?

A weight importance score is assigned to each weight, ordering is done based on the weights that least affect the GF. Here, $H_1(\Theta_1)$ is the model's Hessian at time t.

 $I(\boldsymbol{\Theta}_{t}) = |\boldsymbol{\Theta}_{t}^{\mathsf{T}}\mathsf{H}_{\mathsf{L}}(\boldsymbol{\Theta}_{t})\mathsf{g}_{\mathsf{L}}(\boldsymbol{\Theta}_{t})|$

 ρ % of the parameters are removed (pruned) with the lowest scores.

The following equation shows that preserving GF is equivalent to preserving NTK.

(Preserving GF <-> Preserving NTK)

 $\begin{aligned} \mathsf{GF} &= \mathsf{g}_{\mathsf{L}}(\boldsymbol{\Theta}_{\mathsf{t}})^{\mathsf{T}}\mathsf{g}_{\mathsf{L}}(\boldsymbol{\Theta}_{\mathsf{t}}) \\ &= \mathsf{g}_{\mathsf{L}}(\mathsf{Y})^{\mathsf{T}}\mathsf{g}_{\mathsf{Y}}(\boldsymbol{\Theta}_{\mathsf{t}})^{\mathsf{T}}\mathsf{g}_{\mathsf{Y}}(\boldsymbol{\Theta}_{\mathsf{t}})\mathsf{g}_{\mathsf{L}}(\mathsf{Y}) \\ &= \mathsf{g}_{\mathsf{L}}(\mathsf{Y})^{\mathsf{T}} \mathsf{NTK} \mathsf{g}_{\mathsf{L}}(\mathsf{Y}) \end{aligned}$

Hence Pruning the weights with the lowest importance score preserves both GF and NTK.

When to Prune?

Two model training dynamics are considered:

Rich active regime: Weights are changing relatively quickly.

Lazy kernel regime: Weights are changing slightly. In this area, the NTK is constant and pruning does not affect model accuracy.

EarlyCroP tries to detect the best time for pruning. The timing for pruning is considered best at the transition from rich active regime to lazy kernel regime.

When to Prune?

When to Prune?

We detect the transition \star from rich to lazy regime with the **pruning time detection score**:

• At every epoch we compute the pruning time score.

 $\Delta_0^t = || \boldsymbol{\Theta}_t^{-} \boldsymbol{\Theta}_0 ||^2$

• If the difference of the scores at two subsequent epochs relative to the initial score Δ^1_{0} is smaller than a defined threshold then we do the pruning.

 $|\Delta_0^t - \Delta_0^{t-1}| / |\Delta_0^1| < \text{threshold}$

Experimental Results

Experimental settings

Experiments are performed over four different tasks.

Image classification: The datasets used for image classification are common benchmarks CIFAR10, CIFAR100 and Tiny-Imagenet. The networks used are ResNet18, VGG16, ResNeXt101 32*16d and ResNext-101 32*48d.

Regression: A Fully Convolutional Residual Network is trained on the NYU Depth Estimation Task (<u>Nathan</u> <u>Silberman & Fergus</u>, 2012).

Natural Language Processing (NLP): Pointer Sentinel Mixture Model (<u>Merity et al. 2017</u>) is trained on PTB language modeling dataset (<u>Marcus et al. 1993</u>).

Reinforcement Learning (RL): The FLARE framework (<u>Yu et al. 2018</u>) is used to evaluate a simple 3-layer FCNN on the control game CartPole-v0 (<u>Brockman et al. 2016</u>).

0.900

Figure: Structured (Left) and Unstructured (Right) test accuracy for (a) ResNet18/CIFAR10, (b) ResNet18/Tiny-Imagenet, (c) VGG16/CIFAR10 and (d) VGG16/CIFAR100 with increasing weight sparsity.

Table. Comparison between different pruning criteria on ResNet18/CIFAR10 at 95% sparsity, averaged over 3 runs. \uparrow/\downarrow indicate metrics where higher/ lower is better. GPU RAM and Disk correspond to those of the final pruned model.

	Method	Test accuracy \uparrow	Weight sparsity	Node sparsity	$\frac{\text{Training}}{\text{time (h)}}\downarrow$	Batch time (ms) \downarrow	GPU RAM (GB) ↓	Disk (MB)↓	$\underbrace{ \substack{ \text{Emissions} \\ (g) } }_{\text{(g)}} \downarrow$
	Dense	$91.5\%\pm0.12$	-	-	0.78	109	2.38	398	83
2	Random-S	$86.3\% \pm 0.06$	93.7%	75.0%	0.68	82	0.62	24.9	38
	SNAP	$87.6\% \pm 0.94$	93.6%	72.6%	0.70	81	0.63	25.4	39
pa	CroP-S	$87.5\% \pm 0.36$	93.6%	72.3%	0.67	91	0.63	25.4	43
Structure	CroPit-S	$\underline{87.8\%}\pm0.33$	95.0%	74.5%	0.52	0.48	0.59	19.6	35
	EarlyBird	$84.3\% \pm 0.32$	95.3%	65.0%	0.48	72	0.58	19.1	55
	EarlyCroP-S	$91.0\%\pm0.52$	95.1%	65.8%	0.52	66	0.56	19.2	68
	GateDecorators	$87.3\%\pm0.09$	95.7%	73.7%	0.72	83	0.58	17.2	54
	EfficientConvNets	$70.5\%\pm0.53$	95.9%	79.7%	0.77	83	0.76	25.4	63
	Random-U	$84.9\% \pm 0.24$	95.0%	-	0.78	102	2.86	12.0	79
	SNIP	$88.2\% \pm 0.57$	95.0%	-	0.79	105	2.86	12.0	80
red	GRASP	$88.4\%\pm0.13$	95.0%	-	0.79	106	2.84	12.0	81
Unstructu	CroP-U	$87.9\% \pm 0.16$	95.0%	-	0.75	107	2.88	12.0	79
	CroPit-U	$89.1\% \pm 0.24$	95.0%	-	0.80	113	2.88	12.0	87
	EarlyCroP-U	$91.1\% \pm 0.23$	95.0%	-	0.74	97	2.86	12.0	83
	LTR	$91.5\% \pm 0.26$	95.0%	-	1.94	111	2.51	12.0	202

Table. Comparison between different pruning criteria on VGG16/CIFAR10 at 98% sparsity, averaged over 3 runs. \uparrow/\downarrow indicate metrics where higher/ lower is better. GPU RAM and Disk correspond to those of the final pruned model.

	Method	Test accuracy ↑	Weight sparsity	Node sparsity	Training time (h) ↓	Batch time (ms)↓	GPU RAM (GB) ↓	Disk (MB)↓	$\underset{(g)}{Emissions}_{\downarrow}$
-	Dense	90.2%		1071	1.82	290	1.02	1720	246
	Random-S	89.3%	98.0%	86.1%	0.67	82	0.23	33.6	43
	SNAP	89.8%	98.2%	89.0%	0.68	89	0.22	30	55
p	CroP-S	91.1%	98.0%	88.0%	0.71	91	0.23	33.6	83
ture	CroPit-S	<u>92.4</u> %	98.0%	88.0%	0.81	112	0.23	30.4	100
Struc	EarlyBird	85.9%	98%	89 %	0.52	110	0.32	36.2	160
	EarlyCroP-S	93.0%	98.0%	89.0%	1.16	112	0.63	36.0	156
	GateDecorators	90.0%	98.0%	87.0%	1.07	111	0.23	37.8	143
	EfficientConvNets	84.2%	98.0%	86.0%	1.66	<u>89</u>	0.64	34.2	209
	Random-U	88.5%	98.0%	-	2.03	159	1.22	35.0	247
	SNIP	90.1%	98.0%	-	2.02	157	1.22	35.0	248
red	GRASP	92.0%	98.0%	2	2.03	157	1.23	35.0	249
Unstructu	CroP-U	91.8%	98.0%	89 7 6	2.02	157	1.22	35.0	248
	CroPit-U	91.6%	98.0%	-	2.02	157	1.22	35.0	249
	EarlyCroP-U	<u>93.0</u> %	98.0%	2	2.01	157	1.22	35.0	250
	LTR	93.6%	98.0%	0.70	4.07	158	1.22	35.0	592

Table. Comparison between different pruning criteria on VGG16/CIFAR100 at 98% sparsity. \uparrow/\downarrow indicate metrics where higher/ lower is better. GPU RAM and Disk correspond to those of the final pruned model.

	Method	Test accuracy \uparrow	Weight sparsity	Node sparsity	Training time (h) ↓	Batch time (ms) \downarrow	GPU RAM (GB) ↓	Disk (MB)↓	$\underbrace{ \text{Emissions}}_{(\mathbf{g})} \downarrow$
-	Dense	62.1%	-	-	0.77	114	1.03	1745	88
	Random-S	53.9%	98.0%	86.0%	0.59	53	0.23	35	29
	SNAP	49.3%	98.0%	89.0%	0.67	54	0.16	36	33
pa	CroP-S	57.4%	98.0%	89.0%	0.61	46	0.23	36	35
ture	CroPit-S	56.5%	98.1%	89.0%	0.62	44	0.23	33	30
truc	EarlyBird	60.7%	98.0%	89.0%	0.56	68	0.20	36	62
S	EarlyCroP-S	62.2%	97.9%	88.0%	0.64	69	0.23	36	58
	GateDecorators	55.0%	97.9%	87.0%	0.61	78	0.23	36	68
	EfficientConvNets	29.5%	98.0%	86.0%	0.72	55	0.24	36	83
	Random-U	55.8%	98.0%	-	0.74	118	1.23	35	99
	SNIP	61.9%	98.0%	-	0.79	109	1.24	35	90
red	GRASP	63.4%	98.0%	-	0.79	113	1.24	35	91
Unstructu	CroP-U	63.8%	98.0%	-	0.74	109	1.23	35	94
	CroPit-U	56.3%	98.0%	-	0.74	111	1.23	35	91
	EarlyCroP-U	65.1%	98.0%	-	0.74	109	1.23	35	91
	LTR	<u>64.7</u> %	98.0%	-	3.44	109	1.28	35	301

Table. Comparison between different pruning criteria on ResNet18/TinyImageNet at 90% sparsity. \uparrow/\downarrow indicate metrics where higher/ lower is better. GPU RAM and Disk correspond to those of the final pruned model.

	Method	Test accuracy ↑	Weight sparsity	Node sparsity	$\frac{\text{Training}}{\text{time (h)}}\downarrow$	Batch time (ms)↓	GPU RAM (GB) ↓	Disk (MB) ↓	Emissions
-	Dense	51.3%	(72)	(2)	7.26	320	3.53	569	882
_	Random-S	37.3%	91.2%	80.0%	6.23	289	1.08	51	464
	SNAP	38.3%	90.4%	82.6%	6.06	268	0.84	55	514
pa	CroP-S	<u>39.1</u> %	90.1%	77.7%	6.72	237	1.11	54	615
ture	CroPit-S	<u>39.1</u> %	91.4%	79.3%	6.66	236	1.08	49	591
Struc	EarlyCroP-S	39.2%	90.8%	<mark>84.1</mark> %	7.03	202	0.25	49	676
	GateDecorators	30.1%	89.2%	91.2%	6.20	193	0.87	61	930
	EfficientConvNets	27.7%	91.0%	79.8%	6.60	226	0.22	52	769
	Random-U	49.3%	90.0%	(2 4)	7.25	351	4.20	57	932
	SNIP	46.2%	90.0%	12	7.27	314	4.18	57	854
red	GRASP	43.7%	90.0%	-	7.27	315	4.22	57	881
Unstructu	CroP-U	46.7%	90.0%	-	7.26	314	4.22	57	877
	CroPit-U	19.1%	90.0%	-	7.26	313	4.22	57	890
	EarlyCroP-U	49.8%	90.0%	(27)	7.26	314	4.23	57	880
	LTR	46.3%	90.0%	(12)	44.7	603	3.68	57	5540

Fig.: Tradeoff between GPU RAM consumption and test accuracy. EarlyCroP-S gives the best values. Dataset: CIFAR-100, architecture-VGG16

Table. Comparison of a pruned ResNext101 32x48d (RN48) model and a similar sized dense ResNext101 32x16d (RN16) model (CIFAR10). RN48-S are models pruned with CroP-S.

Model	Test acc.	Weight sparsity	Node sparsity	Epochs	Training time (h)	VRAM (GB)	Emissi- ons (g)
RN48	92.4%	-	-	30	4.60	18.84	634
RN16	92.1%	-	-	30	4.02	3.89	445
RN48-S	92.5%	98.5%	89.9%	30	0.64	3.56	47
RN48-S	93.2%	98.5%	89.9%	80	2.60	3.56	194

Regression

Fig.: Sparse model performance on NYU Depth Estimation task by RMSE

Reinforcement Learning

Fig: Sparse model performance on CartPole control game environments (a) Acrobot-v1 and (b) LunarLander - 2

Natural Language Processing

Fig: Sparse model performance on PTB language modelling task in log perplexity.

Conclusion

- ★ EarlyCroP outperforms other pruning methods, providing the best trade-off between test accuracy and efficiency in terms of time, space, and carbon emissions.
- ★ EarlyCroP can train models that do not fit on commodity GPUs by extracting sparse models that preserve the original model's performance.

THANK YOU FOR YOUR ATTENTION!!!