ACL 2023 Tutorial: Retrieval-based La

Retrieval-based Language Models and Applications

Akari Asai, Sewon Min, Zexuan Zhong, Danqi Chen

CNeRG Reading Group Presentation (14th November, 2024)

> Sayantan Adak Kiran Purohit

The age of large language models (LLMs)

LANGUAGE MODEL SIZES TO MAR/2023

Image: https://lifearchitect.ai/models/

Transformers-based, fully parametric

Retrieval for knowledge-intensive NLP tasks

Representative tasks: open-domain QA, fact checking, ...

Image: http://ai.stanford.edu/blog/retrieval-based-NLP/

Why retrieval \rightarrow LMs?

LLMs can't memorize all (long-tail) knowledge in their parameters

List 5 important papers authored by Geoffrey Hinton

Geoffrey Hinton is a renowned computer scientist ... Here are five important papers authored by him:

1. "Learning Internal Representations by Error **Propagation**" (with **D. E. Rumelhart** and **R. J.** Williams) - This paper, published in 1986, ...

2. "Deep Boltzmann Machines" (with R. Salakhutdinov) - Published in 2009, ...

4. "Deep Learning" (with Y. Bengio and A. Courville) -Published as a book in **2016**,...

5. "Attention Is All You Need" (with V. Vaswani, N. Shazeer, et al.) - Published in **2017**, this paper introduced the Transformer model,...

What is Kathy Saltzman's occupation?

LLMs' knowledge is easily outdated and hard to update

Who is the CEO of Twitter?

As of my **knowledge cutoff in** September 2021, the CEO of Twitter is **Jack Dorsey**....

News

Twitter / CEO

Jun 5, 2023-

- Existing knowledge editing methods are still NOT scalable (active research!)
- The datastore can be easily updated and **expanded** - even without retraining!

LLMs' output is challenging to interpret and verify

Generating text with citations

Question When did the US break away from England?

The US took the first step towards gaining independence from GB when it declared independence on July 2, 1776 (although the event is now commemorated on July 4, 1776, the date when the Declaration of Independence was officially adopted by Congress) [1][2]. The Treaty of Paris was later signed on September 3, 1783, formally separating the United States from the British Empire [3].

[1] <u>Decolonization of</u> <u>the Americas</u>: ... independence from GB on July 2, 1776 ...

[2] <u>Decolonization</u>: ... It was officially adopted by Congress on July 4, 1776 ... [3] <u>American Revolu-</u> <u>tion</u>: ... The Treaty of Paris was signed September 3, 1783 ...

...

(Nakano et al. 2021; Menick et al., 2022; Gao et al., 2023)

LLMs' output is challenging to interpret and verify

Create an itinerary for exploring Toronto over a span of two days.

8 ...

Toronto is a vibrant and diverse city with many attractions and activities to suit different tastes and preferences. Here are some suggestions for creating an itinerary for exploring Toronto over two days:

Q

(b)

Day 1: Start your day with a visit to the CN Tower, the iconic landmark that offers panoramic views of the city and beyond¹. You can also experience the thrill of walking on the glass floor or the EdgeWalk, the world's highest hands-free walk¹. Next, head to the nearby St. Lawrence Market, one of the world's best food markets, where you can sample a variety of cuisines and local specialties². After lunch, take a stroll along Queen West, a trendy neighborhood with eclectic shops, galleries, cafes and street art³. In the evening, enjoy a show at one of the many theaters or comedy clubs in the Entertainment District, or catch a game at the Scotiabank Arena if you're a sports fan.

 Day 2: Explore the history and culture of Toronto at the Royal Ontario Museum, one of the largest and most comprehensive museums in North America, featuring exhibits on art, natural history, world cultures and more . Then, hop on a ferry to the Toronto Islands, a group of islands that offer a relaxing escape from the city, with beaches, parks, trails and amusement rides ³ ⁵. You can also rent a bike or kayak to explore the islands at your own pace. For dinner, head to Chinatown, one of the largest and most vibrant in North America, where you can find a variety of Asian cuisines and shops 3 hope this helps you plan your trip to Toronto. Have fun! 😊 Learn more: 2. travel.usnews.com 3. bing.com 1. cntower.ca 5. tripadvisor.com 4. rom.on.ca

Q [9]

LLMs are shown to easily leak private training data

Individualization on private data by storing it in the datastore

Carlini et al. 2021. "Extracting Training Data from Large Language Models"

tegory	Count
and international news	109
g files and error reports	79
cense, terms of use, copyright notices	54
ts of named items (games, countries, etc.)	54
rum or Wiki entry	53
lid URLs	50
med individuals (non-news samples only)	46
omotional content (products, subscriptions, etc.)	45
gh entropy (UUIDs, base64 data)	35
ntact info (address, email, phone, twitter, etc.)	32
de	31
nfiguration files	30
ligious texts	25
eudonyms	15
nald Trump tweets and quotes	12
b forms (menu items, instructions, etc.)	11
ch news	11
ts of numbers (dates, sequences, etc.)	10

LLMs are *large* and expensive to train and run

Long-term goal: can we possibly reduce the training and inference costs, and scale down the size of LLMs?

A Retrieval-based LM: Definition

A language model (LM) that uses an external datastore at test time

A Retrieval-based LM: Definition

A language model (LM) that uses an external datastore at test time

A language model (LM)

 $P(x_n | x_1, x_2, \cdots, x_{n-1})$

 x_{n-1}

Language model (Transformers)

The capital city of Ontario is

 x_1

 X_2

...

The capital city of Ontario is

LM

Toronto

Fact probing

A Retrieval-based LM: Definition

A language model (LM) that uses an external datastore at test time

Typical LMs

The capital city of Ontario is **Toronto**

Training time

The capital city of Ontario is _____ LM Test time

Retrieval-based LMs

The capital city of Ontario is Toronto

Training time

The capital city of Ontario is _____

Test time

Inference: Datastore

Datastore Raw text corpus

At least billions~ trillions of tokens Not labeled datasets Not structured data (knowledge bases)

Datastore

Find a small subset of elements in a datastore that are the most similar to the query

Goal: find a small subset of elements in a datastore that are the most similar to the query

Goal: find a small subset of elements in a datastore that are the most similar to the query

sim: a similarity score between two pieces of text

Goal: find a small subset of elements in a datastore that are the most similar to the query

sim: a similarity score between two pieces of text

of total docs) # of docs containing i $sim(i, j) = (tf_{i,j}) \times \log \frac{(N)}{df_i}$ Example # of occurrences of i in j

Goal: find a small subset of elements in a datastore that are the most similar to the query

sim: a similarity score between two pieces of text

Example
$$sim(i, j) = (tf_{i,j}) \times log (M) # of total ddf_i # of docs co# of occurrences of i in j$$

- **IOCS**
- ontaining i

An entire field of study on how to get (or learn) the similarity function better

Goal: find a small subset of elements in a datastore that are the most similar to the query

sim: a similarity score between two pieces of text

Index: given q, return argTop- $k_{d\in\mathcal{D}}$ sim(q,d) through fast nearest neighbor search

k elements from a datastore

Goal: find a small subset of elements in a datastore that are the most similar to the query

sim: a similarity score between two pieces of text

Index: given q, return argTop- $k_{d \in D}$ sim(q, d) through fast nearest neighbor search

k elements from a datastore

Can be a totally separate research area on how to do this fast & accurate

Inference: Search

Datastore

Questions to answer

What's the query & when do we retrieve? Query

Datastore

Index

Questions to answer

What's the query & when do we retrieve? Query

Datastore

Index

What do we retrieve?

Questions to answer

What's the query & when do we retrieve? Query

Datastore

What do we retrieve?

Retrieval-based LM: Architecture

What to retrieve?

Text chunks (passages)? Tokens? Something else?

Output

NE YOUTUBE CONSIGNATION

Text chunks (passages)? Tokens? Something else?

Output

ALE O KONTURE CONSIGNATION

Text chunks (passages)? Tokens? Something else? When to retrieve?

Output

Text chunks (passages)? Tokens? Something else?

When to retrieve?

w/ retrieval The capital city of Ontario is Toronto.

Output

Text chunks (passages)? Tokens? Something else?

Output

Text chunks (passages)? Tokens? Something else?

When to retrieve?

w/ retrieval The capital city of Ontario is Toronto. w/retrieval w/r w/r w/r w/r w/r w/r The capital city of Ontario is Toronto. w/ retrieval w/r w/r The capital city of Ontario is Toronto.

)

x = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

x = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

World Cup 2022 was ... the increase to [MASK] in 2026.

x = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

World Cup 2022 was ... the increase to [MASK] in 2026.

\mathbf{x} = World Cup 2022 was the last with 32 teams before the increase to [MASK] in 2026.

Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

World Cup 2022 was ... the increase to [MASK] in 2026.

x = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.

Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

FIFA World Cup 2026 will expand to 48 teams.

World Cup 2022 was ... the increase to [MASK] in 2026.

x = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.

Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

FIFA World Cup 2026 will expand to 48 teams.

World Cup 2022 was ... the increase to [MASK] in 2026.

x = World Cup 2022 was the last before the increase to [MASK] in the 2026 tournament.

Guu et al. 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

FIFA World Cup 2026 will expand to 48 teams.

World Cup 2022 was ... the increase to [MASK] in 2026.

Read stage

FIFA World Cup 2026 will expand to 48 teams.

In 2022, the 32 national teams involved in the tournament.

Team USA celebrated after winning its match against Iran ...

X = World Cup 2022 was ... the increase to [MASK] in 2026.

X = World Cup 2022 was ... the increase to [MASK] in 2026.

X = World Cup 2022 was ... the increase to [MASK] in 2026.

X = World Cup 2022 was ... the increase to [MASK] in 2026.

13M chunks (passages) (called *documents* in the paper) k retrieved chunks

REALM: (2) Read stage

$\rightarrow P(y | x, z_1)$

$\rightarrow P(y | x, z_2)$

$\rightarrow P(y | x, z_k)$

REALM: (2) Read stage

 $\rightarrow P(y | x, z_1)$ $\rightarrow P(y | x, z_2)$ $\rightarrow P(y | x, z_k)$

Weighted average

REALM: (2) Read stage

$$\sum_{z \in \mathcal{D}} \frac{P(z \mid x)P(y)}{\text{from the retrieve stage}} \quad \text{from the read}$$

 $\rightarrow P(y | x, z_1)$ $\rightarrow P(y | x, z_2)$ $\rightarrow P(y | x, z_k)$

Weighted average

X, Z

the stage

What to retrieve?

- Chunks
- Tokens
- Others

How to use retrieval?

- Input layer 🗸
- Intermediate layers
- Output layer

When to retrieve?

- Every *n* tokens (*n*>1)
- Every token

x = World Cup 2022 was the last with 32 teams, before the increase to

Ram et al. 2023. "In-Context Retrieval-Augmented Language Models" Shi et al. 2023. "REPLUG: Retrieval-Augmented Black-Box Language Models"

x = World Cup 2022 was the last with 32 teams, before the increase to

World Cup 2022 was the last with 32 teams, before the increase to

Ram et al. 2023. "In-Context Retrieval-Augmented Language Models" Shi et al. 2023. "REPLUG: Retrieval-Augmented Black-Box Language Models"

* Can use multiple text blocks too (see the papers!)

 \mathbf{x} = World Cup 2022 was the last with 32 teams, before the increase to

World Cup 2022 was the last with 32 teams, before the increase to

Ram et al. 2023. "In-Context Retrieval-Augmented Language Models" Shi et al. 2023. "REPLUG: Retrieval-Augmented Black-Box Language Models"

* Can use multiple text blocks too (see the papers!)

Retrieval helps over all sizes of LMs

Graphs from Ram et al. 2023

How frequent should retrieval be?

How frequent should retrieval be?

The 2022 FIFA World Cup (...) 32 national teams involved in the tournament.

How frequent should retrieval be?

How frequent should retrieval be?

32 teams before the increase to 48 in the 2026 tournament.

How frequent should retrieval be?

How frequent should retrieval be?

How frequent should retrieval be?

Retrieving more frequently helps

Graphs from Ram et al. 2023

4	2	1
16.7	16.5	16.4
18:4	18:2	18.1
21.8	21.5	21.4
30.2	29.8	29.5

Retrieving more frequently helps

Graphs from Ram et al. 2023

with cost in inference time

Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)

What to retrieve?

- Chunks
- Tokens
- Others

How to use retrieval?

- Input layer 🗸
- Intermediate layers
- Output layer

When to retrieve?

- Once
- Every n tokens (n>1)
- Every token

	What do retrieve?	Ho
REALM (Guu et al 2020)	Text chunks	
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	

can be very inefficient to retrieve many text chunks, frequently

Borgeaud et al. 2021. "Improving language models by retrieving from trillions of tokens"

Incorporation in the "intermediate layer" instead of the "input" layer designed for *many* chunks, *frequently*, more *efficiently*

Borgeaud et al. 2021. "Improving language models by retrieving from trillions of tokens"

Incorporation in the "intermediate layer" instead of the "input" layer designed for *many* chunks, *frequently*, more *efficiently*

Scale the datastore (1.8T tokens)

Borgeaud et al. 2021. "Improving language models by retrieving from trillions of tokens"

$\begin{array}{c} \textbf{RETRO} \text{ (Borgeaud et al. 2021)} \\ \textbf{\textit{x}} = \text{World Cup 2022 was the last with 32 teams, before the increase to} \\ \textbf{\textit{x}}_1 \qquad \textbf{\textit{x}}_2 \qquad \textbf{\textit{x}}_3 \end{array}$

Chunked Cross Attention (CCA)

Results

Model	Retrieval Set	#Database tokens	#Database keys	Valid	Test
Adaptive Inputs (Baevski and Auli, 2019)	-		-	17.96	18.65
SPALM (Yogatama et al., 2021)	Wikipedia	3B	3B	17.20	17.60
kNN-LM (Khandelwal et al., 2020)	Wikipedia	3B	3B	16.06	16.12
Megatron (Shoeybi et al., 2019)	25	3 	2 	1.00 M	10.81
Baseline transformer (ours)	-	4 4 0		21.53	22.96
kNN-LM (ours)	Wikipedia	4B	4B	18.52	19.54
Retro	Wikipedia	4B	0.06B	18.46	18.97
Retro	C4	174B	2.9B	12.87	10.23
Retro	MassiveText (1%)	18B	0.8B	18.92	20.33
Retro	MassiveText (10%)	179B	4B	13.54	14.95
Retro	MassiveText (100%)	1792B	28B	3.21	3.92

Significant improvements by retrieving from 1.8 trillion tokens

Perplexity: The lower the better

What to retrieve?

- Chunks
- Tokens
- Others

How to use retrieval?

- Input layer
- Intermediate layers 🗸
- Output layer

When to retrieve?

- Once
- Every *n* tokens (*n*>1)
- Every token

	What do retrieve?	H
REALM (Guu et al 2020)	Text chunks	
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	
RETRO (Borgeaud et al. 2021)	Text chunks	Ι

	What do retrieve?	Ho
REALM (Guu et al 2020)	Text chunks	
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	
RETRO (Borgeaud et al. 2021)	Text chunks	I

Can use many blocks, more frequently, more efficiently

Additional complexity; Can't be used without training (more in section 4)

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens

What else?

More fine-grained; Can be better at rare patterns & out-of-domain Can be very efficient (as long as kNN search is fast)

Datastore is expensive in space: given the same data, # text chunks vs. # tokens

ow to use retrieval?	When to retrieve?
Input layer	Once
Input layer	Every n tokens
ntermediate layers	Every n tokens
Output layer	Every token

- (Wikipedia) 13M vs. 4B

Extensions

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token

It's fixed! Can we do adaptively?

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Inputlayer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Inputlayer	Every n tokens (adaptive)
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens (adaptive)

Decision may not always be optimal

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Input layer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Input layer	Every n tokens <i>(adaptive)</i>
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens <i>(adaptive)</i>

What else beyond text chunks and tokens?

Entities as Experts (Fevry et al. 2020)

Fevry et al. 2020. "Entities as Experts: Sparse Memory Access with Entity Supervision"

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Inputlayer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Inputlayer	Every n tokens <i>(adaptive)</i>
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens <i>(adaptive)</i>
Entities as Experts (Fevry et al. 2020), Mention Memory (de Jong et al. 2022)	Entities or entity mentions	Intermediate layers	Every entity mentions

	What do retrieve?	How to use retrieval?	When to retrieve?
REALM (Guu et al 2020)	Text chunks	Input layer	Once
Retrieve-in-context LM (Shi et al 2023, Ram et al 2023)	Text chunks	Inputlayer	Every n tokens
RETRO (Borgeaud et al. 2021)	Text chunks	Intermediate layers	Every n tokens
kNN-LM (Khandelwal et al. 2020)	Tokens	Output layer	Every token
FLARE (Jiang et al. 2023)	Text chunks	Inputlayer	Every n tokens <i>(adaptive)</i>
Adaptive kNN-LM (He et al 2021, Alon et al 2022, etc)	Tokens	Output layer	Every n tokens <i>(adaptive)</i>
Entities as Experts (Fevry et al. 2020), Mention Memory (de Jong et al. 2022)	Entities or entity mentions	Intermediate layers	Every entity mentions

Most effective for entity-centric tasks & space-efficient

Additional entity detection required

More frequent retrieval =better in performance, but slower

Wrapping up

Wrapping up

Input layer: Simple but can be slower • Intermediate layers: More complex (need training) but can be designed to be more efficient

Retrieval-based LMs: Training

Challenges of updating retrieval models

Datastore

We may encode a lot of (>100M) text chunks using the encoder!

Challenges of updating retrieval models

Datastore

During training, we will update the encoder

Challenges of updating retrieval models

Datastore

Re-indexing will be very expensive!

Datastore

Too large! Expensive to update index during training!

Training methods for retrieval-based LMs

- Independent training
- Sequential training
- Joint training w/ asynchronous index update
- Joint training w/ in-batch approximation

us index update proximation

Training methods for retrieval-based LMs

Independent training

- Sequential training
- Joint training w/ asynchronous index update
- Joint training w/ in-batch approximation

us index update proximation

Independent training

Retrieval models and language models are trained independently

- Training language models

Input ----->

- Training retrieval models

Independent training

Retrieval models and language models are trained independently

- Training retrieval models

Training language models

Back-propagate

Minimize $-\log P_{LM}(y|x)$

Output

Training language models

Back-propagate

Minimize $-\log P_{LM}(y|x)$

Output

GPT-J

.

Independent training

Retrieval models and language models are trained independently

- Training language models

Sparse retrieval models: TF-IDF / BM25

Text chunks

No training needed!

Ramos, 2003. "Using TF-IDF to Determine Word Relevance in Document Queries" Robertson and Zaragoza, 2009. "The Probabilistic Relevance Framework: BM25 and Beyond"

Sparse vectors

Dense retrieval models: DPR (Karpukhin et al. 2020)

Karpukhin et al., 2020. "Dense Passage Retrieval for Open-Domain Question Answering"

Text chunks

Dense retrievers: Inference

Dense retrievers: Inference

How to train dense retrieval models?

Inner Product Similarity

Inner Product Similarity

$$, p^+, p_1^-, p_2^-, \dots, p_n^-)$$

$\log \frac{\exp(\sin(q, p^+))}{\exp(\sin(q, p^+)) + \sum_{j=1}^{n} \exp(\sin(q, p_j^-))}$

Inner Product Similarity

$$, p^+, p_1^-, p_2^-, \dots, p_n^-)$$

$\exp(\sin(q, p^+))$ $\exp(\sin(q,p^+)) + \sum_{j=1}^{n} \exp(\sin(q,p_j^-))$

Contrastive learning

Inner Product Similarity

$$, p^+, p_1^-, p_2^-, \dots, p_n^-)$$

Inner Product Similarity

$$p_{1}^{\bullet}, p_{1}^{-}, p_{2}^{-}, \dots, p_{n}^{-})$$
ve passage
$$exp(sim(q, p^{+}))$$

$$g \overline{exp(sim(q, p^{+})) + \sum_{j=1}^{n} exp(sim(q, p_{j}^{-}))}$$

Inner Product Similarity

Negative passages Too expensive to consider all negatives!

$$(p^+, p_1^-, p_2^-, \dots, p_n^-)$$

Positive passage $exp(sim(q, p^+))$ $- \log \frac{exp(sim(q, p^+))}{exp(sim(q, p^+)) + \sum_{j=1}^{n} exp(sim(q, p_j^-))}$

Training with "in-batch" negatives

$$L(q, p^{+}, p_{1}^{-}, p_{2}^{-}, ..., p_{n}^{-})$$

= $-\log \frac{\exp(\sin(q, p^{+}))}{\exp(\sin(q, p^{+})) + \sum_{j=1}^{n} \exp(\sin(q, p^{+}))}$

Training with "in-batch" negatives

$$L(q, p^{+}, p_{1}^{-}, p_{2}^{-}, ..., p_{n}^{-})$$

= $-\log \frac{\exp(\sin(q, p^{+}))}{\exp(\sin(q, p^{+})) + \sum_{j=1}^{n} \exp(\sin(q, p^{+}))}$

Training with "in-batch" negatives

$$L(q, p^+, p_1^-, p_2^-, \dots, p_n^-)$$

= $-\log \frac{\exp(\sin(q, p^+))}{\exp(\sin(q, p^+)) + \sum_{j=1}^{n} \exp(\sin(q, p^+))}$

Back-propagation to all in-batch negatives!

Retrieval-in-context in LM (Ram et al. 2023)

x = World Cup 2022 was the last with 32 teams, before the increase to

World Cup 2022 was the last with 32 teams, before the increase to

Ram et al. 2023. "In-Context Retrieval-Augmented Language Models"

GPT, OPT, LLaMA, ...

Retrieval-in-context in LM

Each component can be improved separately

Better retrieval-based LMs

Independent training

- B Work with off-the-shelf models (no extra training required)
- Bach part can be improved independently
- LMs are not trained to leverage retrieval
 - Retrieval models are not optimized for LM tasks/domains

Training methods for retrieval-based LMs

Independent training

• Sequential training

- Joint training w/ asynchronous index update
- Joint training w/ in-batch approximation

us index update proximation

Sequential training

- One component is first trained independently and then fixed
- The other component is trained with an objective that depends on the first one

Sequential training

- Retrieval models are first trained independently and then fixed
- Language models are trained with an objective that depends on the retrieval

Datastore

RETRO (Borgeaud et al. 2021) **x** = World Cup 2022 was the last with 32 teams, before the increase to **X**₂ \mathbf{X}_1 \mathbf{X}_3

Borgeaud et al., 2021. "Improving language models by retrieving from trillions of tokens"

Sequential training

- One component is first trained independently and then fixed
- The other component is trained with an objective that depends on the first one

Sequential training

- Language models are first trained independently and then fixed
- Retrieval models are trained/fine-tuned with supervisions from LMs

Datastore

REPLUG (Shi et al. 2023)

Shi et al., 2023. "REPLUG: Retrieval-Augmented Black-Box Language Models"

Sequential training

- Work with off-the-shelf components (either a large index or a powerful LM)
- LMs are trained to effectively leverage retrieval results
 - Retrievers are trained to provide text that helps LMs the most

One component is still fixed and not trained

Let's jointly train retrieval models and LMs!

Training methods for retrieval-based LMs

- Independent training
- Sequential training
- Joint training w/ asynchronous index update
- Joint training w/ in-batch approximation

us index update proximation

Training methods for retrieval-based LMs

- Independent training
- Sequential training
- Joint training w/ asynchronous index update
- Joint training w/ in-batch approximation

ous index update pproximation

Joint training w/ asynchronous index update

- Retrieval models and language models are trained jointly
- Allow the index to be "stale"; rebuild the retrieval index every T steps

Datastore

Asynchronous index update

Datastore
Asynchronous index update

Datastore

Asynchronous index update

Datastore

REALM (Guu et al. 2020)

x = The [MASK] at the top of the pyramid.

 $P(z \mid x)$

Guu et al., 2020. "REALM: Retrieval-Augmented Language Model Pre-Training"

- The pyramidion on top ... the pyramid.
- The [MASK] at the top of the pyramid.

REALM: Index update rate

How often should we update the retrieval index?

- Frequency too high: expensive
- Frequency too slow: out-dated

REALM: Index update rate

How often should we update the retrieval index?

- Frequency too high: expensive
- Frequency too slow: out-dated

REALM: updating the index every 500 training steps

REALM: Index update rate

How often should we update the retrieval index?

- Frequency too high: expensive
- Frequency too slow: out-dated

REALM: updating the index every 500 training steps

Training methods for retrieval-based LMs

- Independent training
- Sequential training
- Joint training w/ asynchronous index update
- Joint training w/ in-batch approximation

us index update

Joint training w/ in-batch approximation

- Retrieval models and language models are trained jointly
- Use "in-batch index" instead of full index

In-batch approximation

Full corpus

In-batch approximation

Re-indexing will be very expensive!

In-batch approximation

Full corpus

Re-indexing will be very expensive!

Joint training

Training is more complicated (async update, overhead, data batching, etc)

Train-test discrepancy still remains

Summary

Training method

Independent training (Ram et al 2023; Khandelwal et al 2020)

Sequential training (Borgeaud et al 2021; Shi et al 2023)

Joint training: async update (Guu et al 2020; Izacard et al 2022)

Joint training: in-batch approx (Zhong et al 2022; Min et al 2023; Rubin and Berant 2023)

- * Easy to implement: offmodels
- * Easy to improve: sub-m can be separately improv

* End-to-end trained — v performance!

the-shelf	* Madala are not and to and trained
nodule ved	- suboptimal performance
/ery good	 Training may be complicated (overhead, batching methods, etc) Train-test discrepancy still remains

Applications

A range of target tasks

Question Answering

RETRO (Borgeaud et al., 2021)

REALM (Gu et al, 2020)

ATLAS (Izacard et al, 2023)

Fact verification

RAG (Lewis et al, 2020)

ATLAS (Izacard et al, 2022)

Evi. Generator (Asai et al, 2022)

Retrieval-based LMs have been extensively evaluated on knowledge-intensive tasks

A range of target tasks

Question answering

RETRO (Borgeaud et al., 2021)

REALM (Gu et al, 2020)

ATLAS (Izacard et al, 2023)

Summarization

FLARE (Jiang et al, 2023)

Fact verification

RAG (Lewis et al, 2020)

ATLAS (Izacard et al, 2022)

Evi. Generator (Asai et al, 2022)

Machine translation

kNN-MT (Khandelwal et al., 2020)

TRIME-MT (Zhong et al., 2022)

NLI

kNN-Prompt (Shi et al., 2022) NPM (Min et al., 2023)

Sentiment analysis

kNN-Prompt (Shi et al., 2022) NPM (Min et al., 2023)

More general NLP tasks

Two key questions for downstream adaptations

How can we adapt a retrieval-based LM for a task?

When should we use a retrieval-based LM?

How to adapt a retrieval-based LM for a task

What are the tasks?

- Open-domain QA
- Other knowledgeintensive tasks
- Sentiment analysis
- Code generation

. . .

How to adapt?

- Fine-tuning
- Reinforcement learning
- Prompting

How to adapt a retrieval-based LM for a task

Fine-tuning (+RL)

Training LM and / or retriever on task-data & data store

Prompting

Prompt a frozen LM with retrieved knowledge

How to adapt a retrieval-based LM for a task

What are the tasks?

- **Open-domain QA**
- Other knowledgeintensive tasks
- Sentiment analysis
- Code generation

. . .

How to adapt?

- Fine-tuning
- **Reinforcement learning**
- Prompting

When to use a retrieval-based LM

knowledge update

Long-tail

Verifiability

Parameterefficiency

Long-tail

knowledge update

Q: Is Toronto really cold during winter?

Verifiability

Parameterefficiency

Verifiability

Long-tail

knowledge update

Q: Where is Toronto Zoo located?

Parameterefficiency

<u>**1361A</u> Old Finch Avenue, in Scarborough, Ontario**</u>

Verifiability

Long-tail

Q: Where is Toronto Zoo located?

efficiency

361A Old Finch Avenue, in Scarborough, Ontario

Location: 361A Old Finch Avenue,

Q: What is the population of Toronto Metropolitan area in 2023?

Trained on the **2021** corpus

Q: What is the population of Toronto Metropolitan area in 2023?

Trained on the **2021** corpus

Collected in 2023

Retriever

Q: Where is Toronto Zoo located?

Verifiability

361A Old Finch Avenue, in Scarborough, Ontario

Location: 361A Old Finch Avenue,

Parameterefficiency

Two key questions for downstream adaptations

How can we adapt a retrieval-based LM for a task?

When should we use a retrieval-based LM?

Downstream adaptation of retrieval-based LMs

What are the tasks?

- Open-domain QA
- Other knowledgeintensive tasks
- General NLU
- Language Modeling & other generation tasks

How to adapt?

- Fine-tuning
- Reinforcement learning
- Prompting

- Wikipedia
- Web (Google / Bing Search Results)
- Training data

Prompting

k-shot instances (k=0, 32 ... etc)

Retrieval-based prompting

k-shot instances (k=0, 32 ... etc)

Design choice of retrieval-based Prompting

Input space:

Intermediate layers: N/A

Output space: Interpolate token probability distributions in output space

Incorporate retrieved context in input space

Retrieval-based Prompting

Output space: Interpolate token probability distributions in output space

Incorporate retrieved context in input space

(Shi et al., 2023; Ram et al., 2022; Mallen et al., 2022; Yu et al., 2022; Press et al., 2022; *inter alia*)

REPLUG (Shi et al., 2023; Section 3&4)

X What is the capital of Ontario?

Toronto is in Canada. It is the capital city of the province of Ontario.

Retriever

REPLUG (Shi et al., 2023; Section 3&4)

X What is the capital of Ontario?

Toronto is in Canada. It is the capital city of the province of Ontario.

Ontario is home to the nation's capital city, Ottawa, and the most populous city Toronto.

Retriever

Top 10 documents

. . .

Ottawa Toronto Ontario

REPLUG (Shi et al., 2023; Section 3&4)

X What is the capital of Ontario?

Toronto is in Canada. It is the capital city of the province of Ontario.

Ontario is home to the nation's capital city, Ottawa, and the most populous city Toronto.

Retriever

Top 10 documents

. . .

REPLUG: Results on QA & MMLU

Large performance gain from base LM

26

REPLUG: Comparison with ATLAS

Outperforms ATLAS in fewshot, especially in MMLU

REPLUG: Comparison with ATLAS

ATLAS (Full / Transfer) outperforms REPLUG

28

Summary of downstream adaptations

	Targettask	Adap
ATLAS (Izacard et al., 2022)	Knowledge-intensive	(R L№
GopherCite (Menick et al., 2022)	Open-domain QA, Long- form QA	Fine-
kNN-prompt (Shi et al., 2022)	Classification	Proi
REPLUG (Shi et al., 2023)	Knowledge-intensive	Pror
Revenu or Letlieva	II- IVO tr	aınınç
based prompting Hard t		to cc

- g & strong pertormance
- ontrol, underperforming full FT model

How to adapt a retrieval-based LM for a task

Retrieval-based prompting is easy and simple; no need to train but has higher variance

Fine-tuning (+ RL) requires training but less variance & is completive with more data

Downstream adaptation of retrieval-based LMs

What are the tasks?

- Open-domain QA
- Other knowledgeintensive tasks
- General NLU
- Language Modeling & other generation tasks

How to adapt?

- Fine-tuning

- Reinforcement learning
- Prompting

What is data store?

- Unlabeled
 Wikipedia / CC
- Web (Google / Bing Search Results)
- Training data

Adapting retrieval-based LMs for tasks

Fine-tuning

Training LM and / or retriever on task-data & data store

Adapting retrieval-based LMs for tasks

. . .

Fine-tuning

Training LM and / or retriever on task-data & data store

Costs of retrieval-based LM training (Section 4)

Independent training (DPR) Asynchronous updates (REALM)

ATLAS (Izacard et al., 2022; Section 4)

ATLAS: Fixed retrieval with fine-tuned LM

ATLAS: Query-side fine-tuning

Ablations of efficient retrieval training

Ablations of efficient retrieval training

Query-side fine-tuning matches or outperforms full fine-tuning

Summary of downstream adaptations

Fine-tuning for QA & knowledge-intensive tasks often gives strong performance (even in few-shot)

Adaptation method

Datastore

Fine-tuning (Retriever & LM)

Wikipedia | CC

Summary of downstream adaptations

Fine-tuning a retriever for a task matters!

Downstream adaptation of retrieval-based LMs

What are the tasks?

- Open-domain QA
- Other knowledgeintensive tasks
- General NLU
- Language Modeling & other generation tasks

How to adapt?

- Fine-tuning
- Reinforcement learning
- Prompting

What is data store?

- Unlabeled
 Wikipedia / CC
- Web (Google / Bing Search Results)
- Training data

GopherCite: RLHF for answering with verified quotes Reinforcement Learning with human feedback 9 (e.g., Instruct GPT) \mathcal{X} y Reward LM ► *Y*₂ Index Model NEPL 10 2 Z y Human Off-the-shelf **Google Search** preference

References

Architecture:

<u>REALM: Retrieval-Augmented Language Model Pre-Training</u> (Guu et al., 2020) In-Context Retrieval-Augmented Language Models (Ram et al., 2023) **<u>REPLUG: Retrieval-Augmented Black-Box Language Models</u> (Shi et al., 2023) Improving language models by retrieving from trillions of tokens** (Borgeaud et al., 2022) **<u>Generalization through Memorization: Nearest Neighbor Language Models</u> (Khandelwal et al., 2020)**

Training:

Dense Passage Retrieval for Open-Domain Question Answering (Karpukhin et al., 2020) **Improving language models by retrieving from trillions of tokens** (Borgeaud et al., 2022 ;also in Section 3) **Atlas: Few-shot Learning with Retrieval Augmented Language Models** (Izacard et al., 2022) **Training Language Models with Memory Augmentation** (Zhong et al., 2022)

Application:

Atlas: Few-shot Learning with Retrieval Augmented Language Models (Izacard et al., 2022; also in Section 4) **Teaching language models to support answers with verified quotes** (Menick et al., 2022) **<u>REPLUG: Retrieval-Augmented Black-Box Language Models</u> (Shi et al., 2023; also in Section 3)**

More details:

https://acl2023-retrieval-lm.github.io/

Thank you