

# Application of Subset Selection in Robust and Efficient Machine Learning

Online Research Development Program on Exploring AI and ML Applications

#### Kiran Purohit (PhD Scholar)

Advisor: Prof. Sourangshu Bhattacharya

Dept. of CSE, IIT Kharagpur

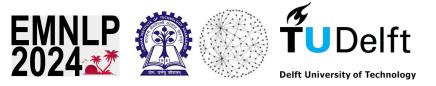


# Outline

- 1. EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning (EMNLP-main (long) 2024)
- 2. A Greedy Hierarchical Approach to Whole-Network Filter-Pruning in CNNs (TMLR 2024)
- 3. A Data-Driven Defense against Edge-case Model Poisoning Attacks on Federated Learning (ECAI 2024)







# EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning

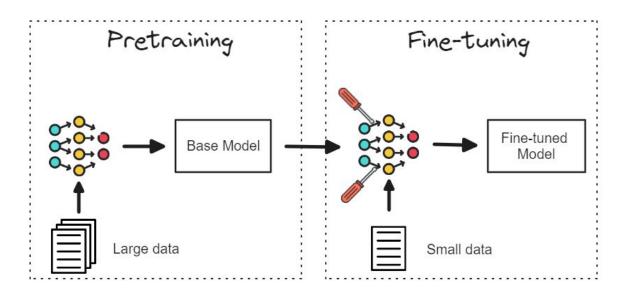
Kiran Purohit, Venktesh V, Raghuram Devalla, Krishna Mohan Yerragorla, Sourangshu Bhattacharya, Avishek Anand



Dept. of Computer Science & Engineering IIT Kharagpur

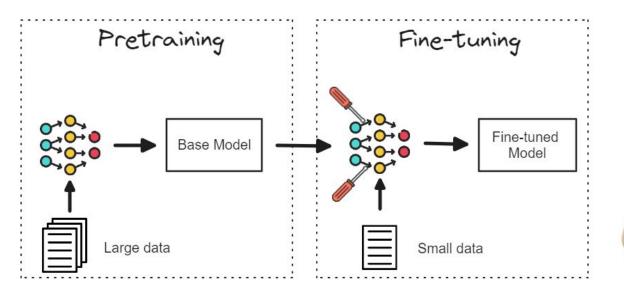
#### How to make model adapt to new task?





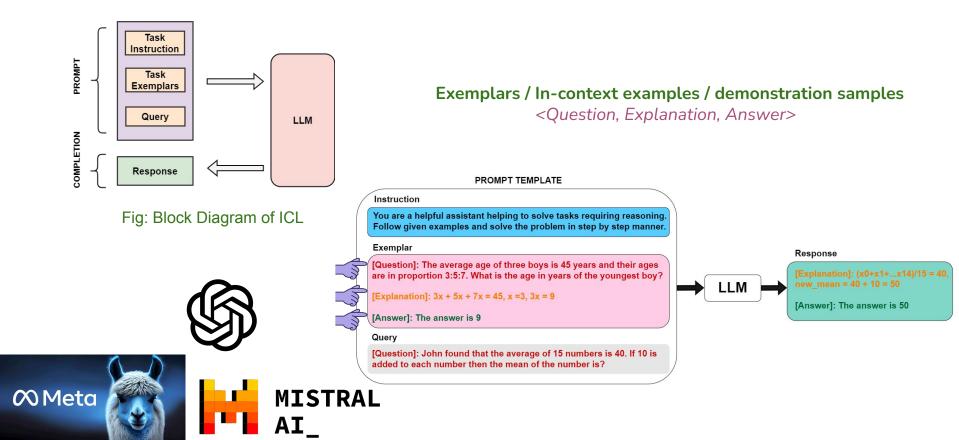
#### How to make model adapt to new task?





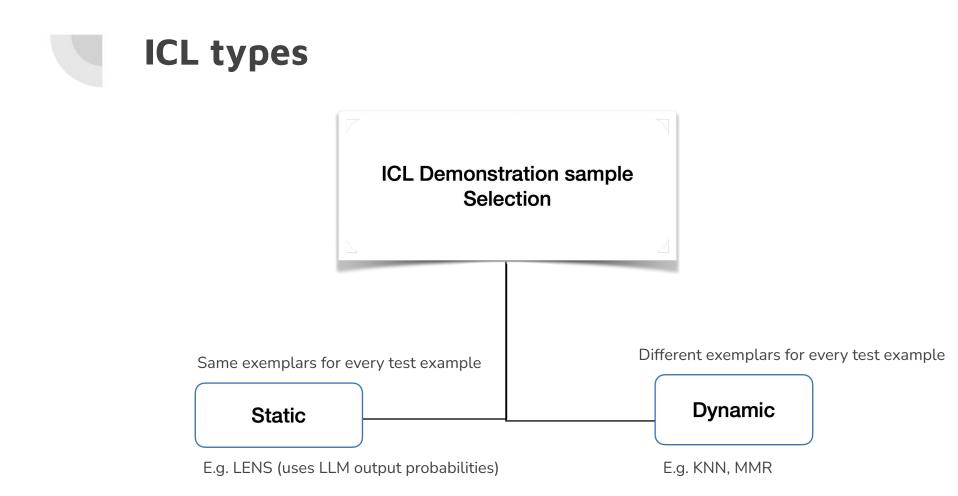


# In-Context Learning (ICL)



# Which exemplars to select from the training examples?

Due to the financial and performance costs associated with large contexts, providing all training exemplars is impractical.



# Can we design a method which can work for black box models too?

# Challenges

- 1. The number of exemplar-subsets is exponential.
  - Let's say, we have 5000 training exemplars, and we want a prompt with 5 exemplars. Possible combinations will lead to  ${}^{5000}C_5$  (~ 2.5 \* 10<sup>16</sup>) exemplar subsets.
- 2. Evaluation of each exemplar-subset, is expensive.
  - As it involves LLM inference.

#### **Overall Architecture**

( ... )

Exemplar clusters



Training exemplars



 $p_4$ 

- p<sub>1</sub>: While purchasing groceries ram bought **5** apples ...
- $p_2$  : Ephraim has  $\ensuremath{\mathsf{two}}\xspace$  machines that make necklaces  $\dots$

 $p_1$ 

 $\vec{p_3}$ 

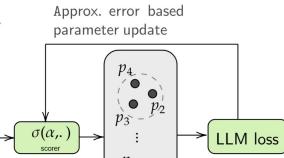
 $p_1$ 

- \$6

U (Sampling with

replacement)

 $p_2$ 



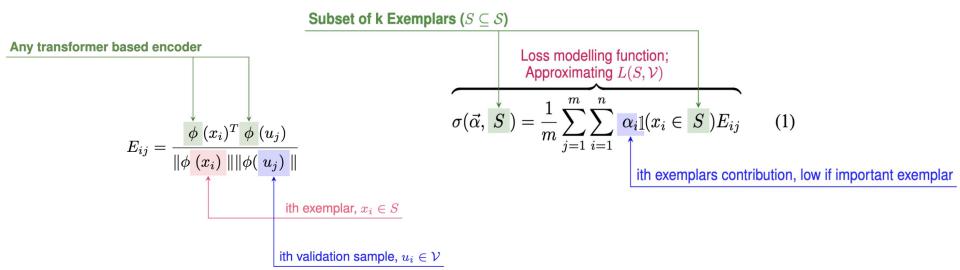
U(Low - Loss)

subsets)

## Loss Modeling

• Objective: Minimize the number LLM inferences

<u>Scoring Function</u> ( $\sigma$ ): Linear function for approximating validation loss based on similarity features between exemplars and validation examples.

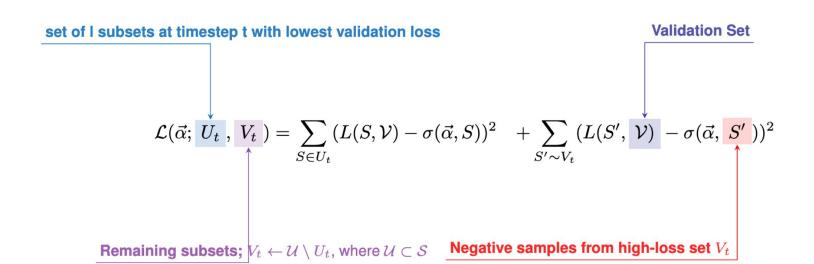


#### Efficient Estimation of parameters ( $\alpha$ )

**Challenge**: Exponential number of exemplar-subsets

**Solution**: Learn  $\alpha$  and estimate the top-l low-loss subsets in a sample efficient manner

- Update parameters ( $\alpha$ ) to reduce the approximation error
- Estimating loss (L) here involves LLM calls and equivalent to arm pulling



#### **Explore-Exploit Paradigm**

Algorithm **EXPLORA** 1 Input:  $\mathcal{U} \subset \mathcal{S}$ : ▷ Initial exemplar subsets 2 Initialize:  $U_0 \leftarrow$  set of random l subsets from  $\mathcal{U}$  $t \leftarrow 0$ 3  $\vec{\alpha} \leftarrow \mathcal{N}(0,1)$ ▷ Sampling from a gaussian 5 while t < T do Let  $V_t \leftarrow \mathcal{U} \setminus U_t$ 6  $\vec{\alpha_t} \leftarrow \min_{\vec{\alpha}} \mathcal{L}(\vec{\alpha}, U_t, V_t)$ 7  $S_t^* = \arg\min_{S \in V_t} \sigma(\vec{\alpha_t}, S)$ ▷ Lowest loss 8 subset  $\hat{S}_t = \arg\max_{S \in U_t} \sigma(\vec{\alpha_t}, S)$ ▷ Highest loss 9 subset if  $\sigma(\vec{\alpha_t}, S_t^*) < \sigma(\vec{\alpha_t}, \tilde{S}_t)$  then 10  $U_t \leftarrow U_t \setminus \{\tilde{S}_t\} \\ U_{t+1} \leftarrow U_t \cup \{S_t^*\}$  $\triangleright$  Remove  $S_t$ 11  $\triangleright$  add  $S_t^*$ 12 end 13  $t \leftarrow t + 1$ 14 15 end 16 **Output:**  $U_T$ ;Set of l subsets from  $\mathcal{U}$  which have the lowest validation loss

#### **Results and Analysis**

| Method                                   | GSM8K            | AquaRat                           | TabMWP          | FinQA            | StrategyQA      |
|------------------------------------------|------------------|-----------------------------------|-----------------|------------------|-----------------|
|                                          |                  | GPT-3.5-turbo                     |                 |                  |                 |
| dynamic                                  |                  |                                   |                 |                  |                 |
| KNN (Rubin et al., 2022)                 | 53.45            | 51.96                             | 77.07           | 51.52            | 81.83           |
| KNN (S-BERT) (Rubin et al., 2022)        | 53.07            | 52.75                             | 77.95           | 52.65            | 81.83           |
| MMR (Ye et al., 2023b)                   | 54.36            | 51.18                             | 77.32           | 49.87            | 82.86           |
| KNN+SC (Wang et al., 2023c)              | 80.21            | 62.59                             | 83.08           | 54.49            | 83.88           |
| MMR+SC (Wang et al., 2023c)              | 78.01            | 59.45                             | 81.36           | 50.74            | 83.88           |
| PromptPG (Lu et al., 2023b)              | -                | -                                 | 68.23           | 53.56            | -               |
| static                                   |                  |                                   |                 |                  |                 |
| Zero-Shot COT (Kojima et al., 2023)      | 67.02            | 49.60                             | 57.10           | 47.51            | 59.75           |
| Manual Few-Shot COT (Wei et al., 2023)   | 73.46            | 44.88                             | 71.22           | 52.22            | 73.06           |
| Random                                   | 67.79            | 49.80                             | 55.89           | 53.70            | 81.02           |
| PS+ (Wang et al., 2023b)                 | 59.30            | 46.00                             | -               | -                | -               |
| Auto-COT (Zhang et al., 2023b)           | 57.10            | 41.70                             | -               | -                | 71.20           |
| GraphCut (Iyer and Bilmes, 2013)         | 66.19            | 47.24                             | 60.45           | 52.31            | 80.00           |
| FacilityLocation (Iyer and Bilmes, 2013) | 68.61            | 48.43                             | 67.66           | 36.79            | 81.63           |
| LENS (Li and Qiu, 2023)                  | 69.37            | 48.82                             | 77.27           | 54.75            | 79.79           |
| LENS+SC (Li and Qiu, 2023)               | 79.37            | 57.87                             | 80.68           | 60.06            | 82.24           |
| Our Approach                             |                  |                                   |                 |                  |                 |
| EXPLORA                                  | 77.86(12.24%) †  | 53.54(49.67%)†                    | 83.07(17.51%) † | 59.46(18.60%) †  | 85.71(15.63%) † |
| EXPLORA+SC                               | 86.35(▲24.48%) ‡ | 63.39(129.84%) ‡                  | 85.52(10.68%) ‡ | 64.52(17.84%) ‡  | 87.14 (49.21%)† |
| EXPLORA+KNN+SC                           | 85.14 (122.73%)‡ | 62.20(127.41%)‡                   | 86.29(12.39%) ‡ | 65.12(A18.94%) ‡ | 88.37(10.75%)†  |
| EXPLORA+MMR+SC                           | 86.13(124.16%) ‡ | <b>63.78</b> ( <b>1</b> 30.64%) ‡ | 86.96(12.54%)‡  | 64.60(17.99%) ‡  | 87.55(49.73%)†  |
|                                          |                  | GPT-40                            |                 |                  |                 |
| LENS (Li and Qiu, 2023)                  | 76.19            | 64.56                             | 86.34           | 69.31            | 92.85           |
| EXPLORA                                  | 93.63            | 69.29                             | 90.12           | 72.71            | 95.10           |

Table: Results across datasets in transfer setting using gpt-3.5-turbo with exemplars selected from Mistral-7b.

#### **Exemplars Transfer Works Well**

| Method     | Т | GSM   | Aqua  | Tab   | Fin   | Strat |
|------------|---|-------|-------|-------|-------|-------|
| EXP        | L | 79.07 | 53.94 | 80.11 | 54.66 | 85.31 |
|            | Μ | 77.86 | 53.54 | 83.07 | 59.46 | 85.71 |
| EXP+SC     | L | 85.82 | 63.78 | 86.76 | 61.16 | 85.10 |
|            | M | 86.35 | 63.39 | 85.52 | 64.52 | 87.14 |
| EXP+KNN+SC | L | 85.89 | 64.17 | 85.74 | 63.64 | 86.53 |
|            | Μ | 85.14 | 62.20 | 86.29 | 65.12 | 88.37 |
| EXP+MMR+SC | L | 86.20 | 62.99 | 87.81 | 64.60 | 86.12 |
|            | Μ | 86.13 | 63.78 | 86.96 | 64.60 | 87.55 |

Table: Results for transfer (T) of exemplars selected using EXPLORA (EXP) on smaller LLMs (Llama2-7b (L) and Mistral-7b (M)) to larger LLM (gpt-3.5-turbo).

#### **EXPLORA** is resource Efficient

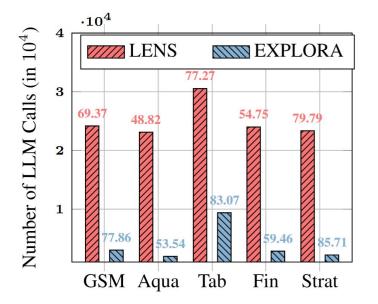


Figure: Frugal exemplar selection by EXPLORA: LLM calls LENS vs EXPLORA (y-axis) with corresponding EM scores indicated on top of bars

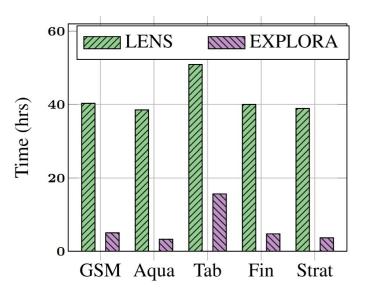


Figure: Runtime comparison LENS vs EXPLORA.

#### **Ablation Studies**

| Datasets                                          | GSM            | Aqua           | Tab                   | Fin                   | Strat          |
|---------------------------------------------------|----------------|----------------|-----------------------|-----------------------|----------------|
| Exhaustive eval<br>EXPLORA (-exploration)         | 76.72<br>75.89 | 50.39<br>50.00 | 82.24<br>75.16        | 57.02<br>50.30        | 82.45<br>80.40 |
| (Mistral)<br>EXPLORA (Llama)<br>EXPLORA (Mistral) | 79.07<br>77.86 | 53.94<br>53.54 | 80.11<br><b>83.07</b> | 54.66<br><b>59.46</b> | 85.31<br>85.71 |

Table: Ablation studies: exhaustive evaluation, w/o exploration vs proposed exploration (EXPLORA).

#### **Exemplars selected for AquaRat by EXPLORA**

**Question**: The average age of three boys is 15 years and their ages are in proportion 3:5:7. What is the age in years of the youngest boy?

**Options**: ['A)9', 'B)10', 'C)11', 'D)12', 'E)13']

**Rationale:**3x + 5x + 7x = 45, x = 3, 3x = 9 **Answer: A** 

Question: Can you deduce the pattern and find the next number in the series? 6, 14, 26, 98?

**Options**: ["A)276', 'B)277', 'C)278', 'D)279', 'E)None of these']]

**Rationale:**  $6 = 1^1 + 2^1 + 3^1$ ,  $14 = 1^2 + 2^2 + 3^2$ ,  $36 = 1^3 + 2^3 + 3^3$ ,  $98 = 1^4 + 2^4 + 3^4$  Thus the next number **Answer**: A

**Question:**In covering a distance of 42 km, A takes 2 hours more than B. If A doubles his speed, then he would take 1 hour less than B. A's speed is:?

**Options**: 'A)5 km/h', 'B)7 km/h', 'C)10 km/h', 'D)15 km/h', 'E)25 km/h' **Rationale:** Let A's speed be X km/hr. Then, 42/x - 42/2x = 3 6x = 42 x = 7 km/hr **Answer:** B

Question: Find the number which when multiplied by 15 is increased by 196.

**Options**: 'A)14', 'B)20', 'C)26', 'D)28', 'E)30' **Rationale:** Solution Let the number be x . Then,  $15x - x = 196 \iff 14x = 196 x \iff 14$  **Answer:** A

**Question:** A certain sum of money at simple interest amounted Rs.980 in 3 years at 5% per annum, find the sum?

**Options**: 'A)867', 'B)855', 'C)299', 'D)852', 'E)903' **Rationale:** 980 = P [1 + (3\*5)/100] P = 852 **Answer:** D

# Conclusion

- Proposed an efficient and robust task level exemplar subset selection method, EXPLORA, that identifies highly informative exemplar subsets.
- EXPLORA saves resources by reducing the number of LLM calls, in contrast to the current state-of-the-art.
- Exemplars selected by EXPLORA on smaller LLMs are well transferred to larger LLMs.
- EXPLORA outperforms existing static and dynamic exemplar selection methods.



# A Greedy Hierarchical Approach to Whole-Network Filter-Pruning in CNNs

Kiran Purohit, Anurag Parvathgari and Sourangshu Bhattacharya



Dept. of Computer Science & Engineering IIT Kharagpur





#### Introduction



Burden of CNNs ——ResNet-152

60.2 million parameters and 231MB storage spaces;

380MB memory footprint

11.3 billion float point operations (FLOPs).

Filter Pruning ——Benefits

reduces the storage usage

decreases the memory footprint

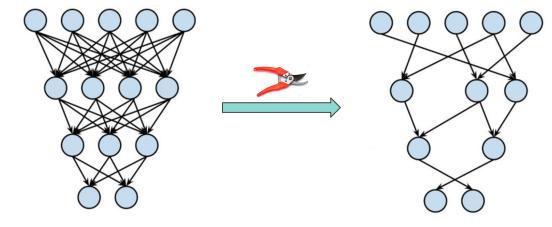
accelerates the inference



# Introduction

#### **Network Pruning**

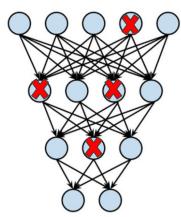
Given a pre-trained network  $\Phi(.)$ , the goal is to compress the network while maintaining the high performance as much as possible by removing the unnecessary parameters.

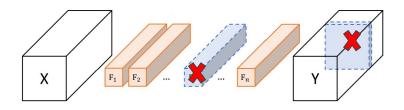


Pre-trained original network  $\Phi(.)$ 

Final pruned network  $\Phi$ '(.)

#### **Network Pruning**





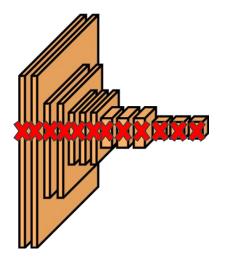
Weights or Node Pruning

- Pruning applied to early DNN
- Check the importance of each weight or node
- Practical acceleration could not be achieved

#### Filter or Channel Pruning

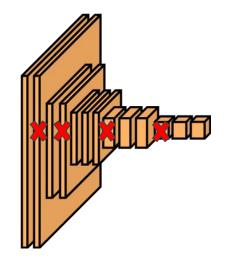
- Widely used for modern CNNs
- Remove the entire filter or channel at once
- Helps the practical acceleration of the network





#### **Uniform Pruning**

- Prune filters uniformly from each layer
- Process each layer independently and sequentially.



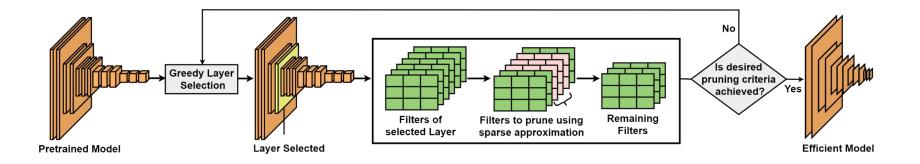
#### **Non-Uniform Pruning**

- Prune different fractions of filters from each layer
- All the layers in the network collectively make the final prediction

#### Contribution

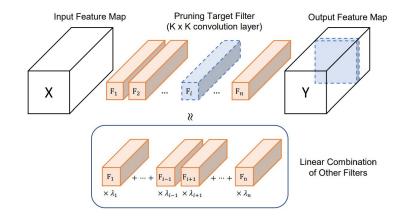
- We developed faster **non-uniform pruning** methods.
- We used a hierarchical scheme with two-levels:
  - **filter pruning** this step identifies the most appropriate filters to be pruned from each layer.
  - **layer selection** this step selects the best layer to currently prune from.

We apply these two steps iteratively to achieve a non-uniform pruning.



#### **Related Work**

#### **LRF** "Linearly Replaceable Filters for Deep Network Channel Pruning" AAAI 2021



LRF suggests that we can replace the filter that can be approximated by the linear combination of other filters

#### **Related Work**

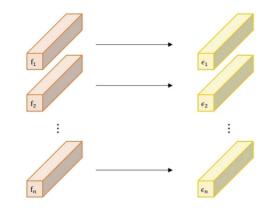
In a layer, we can approximate each filter as a linear combination of the other filters

$$f_{:,j} = \sum_{l \neq j} \lambda_{j,l} f_{:,l} + \epsilon_j$$

Here,  $\epsilon$  = approximation error and  $\lambda_{i,l}$  = weight coefficient of the respective filters

• Each  $\lambda_{i,l}$  can be found by solving following minimization problem

 $\min_{\lambda_{j,:}} ||f_{:,j} - \sum_{l 
eq j} \lambda_{j,l} f_{:,l}||^2$ 



Remove the i<sup>th</sup> filter with the smallest  $||\epsilon_i||$ 

#### **FP-OMP** for Pruning Multiple Filters

We develop an Orthogonal Matching Pursuit (OMP) based algorithm for selecting retained filters of a layer into S. Hence filters that are to be pruned are  $\{1,2,...n\}$  \ S.

We can approximate the pruned filters in terms of retained filters.

$$f_{:,j} = \sum_{l \in S} \lambda_{j,l} f_{:,l} + \epsilon_j, \forall j \notin S$$

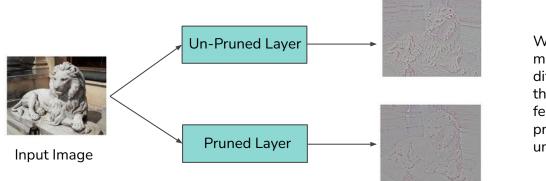
We pose a sparse approximation problem for finding **S** and  $\lambda$ 

$$S^*, \lambda^* = \operatorname{argmin}_{|S| \le (1-\beta)n, \lambda} \sum_{j \in \{1, 2, \dots, n\}} ||f_{:,j} - \sum_{l \in S} \lambda_{j,l} f_{:,l}||^2$$

where **S** is the set of the selected/retained filters in a layer, **n** is the total number of filter in that layer, and  $\beta$  is the pruning fraction

#### **HBGS** for Layer Selection

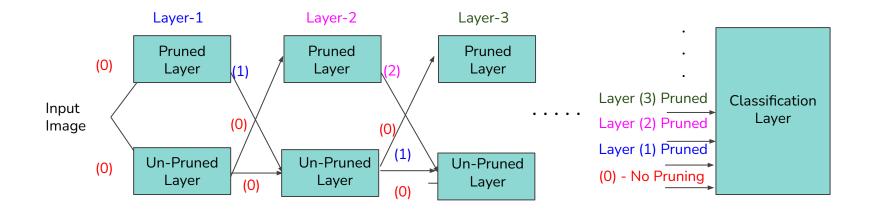
- We develop Hierarchical Backward Greedy Search (HBGS) for selecting the best layer to currently prune from.
- Key idea here is to calculate the relative reconstruction error between the pruned layer output and unpruned layer output
  - and then finally choose the layer with minimum error to currently prune from.



We want to minimise the difference b/w the output feature maps of pruned and unpruned layers

#### **HBGTS** for Layer Selection

- We develop Hierarchical Backward Greedy Tree Search (HBGTS) for selecting the best layer to currently prune from.
- Key idea here is to calculate the error in final layer output, if layer  $j \in \{1, ..., C\}$  is pruned
  - and then finally choose the layer with minimum error to currently prune from.



#### **Results and Analysis**

|                                    | VGG16/CIFAR100 @ 98%                                   |                           |                                                                  |                                                                    | ResNet18/CIFAR10 @ 95%    |                           |               |                                                                  |
|------------------------------------|--------------------------------------------------------|---------------------------|------------------------------------------------------------------|--------------------------------------------------------------------|---------------------------|---------------------------|---------------|------------------------------------------------------------------|
| Method                             | $\begin{array}{c} \text{Test Acc} \\ (\%) \end{array}$ | $Acc \downarrow$ (%)      | $\begin{array}{c} \mathbf{Param} \downarrow \\ (\%) \end{array}$ | $ \begin{array}{c} \mathbf{FLOPs} \downarrow \\ (\%) \end{array} $ | Test Acc<br>(%)           | $Acc \downarrow$ (%)      | Param↓<br>(%) | $\begin{array}{c} \textbf{FLOPs} \downarrow \\ (\%) \end{array}$ |
| Dense                              | $67.1 \pm 0.01$                                        | $0\pm 0$                  | -                                                                | -                                                                  | $94.5 \pm 0.02$           | $0\pm 0$                  | -             | -                                                                |
| Random                             | $55.5\pm0.16$                                          | $11.6\pm0.16$             | 98.0                                                             | 86.0                                                               | $86.3\pm0.06$             | $8.2\pm0.06$              | 93.7          | 65.0                                                             |
| EarlyCroP-S (Rachwan et al., 2022) | $62.8\pm0.52$                                          | $4.3\pm0.52$              | 97.9                                                             | 88.0                                                               | $91.0\pm0.52$             | $3.5\pm0.52$              | 95.1          | 65.8                                                             |
| DLRFC (He et al., 2022)            | $63.5\pm0.09$                                          | $3.56\pm0.09$             | 97.1                                                             | 53.7                                                               | -                         | -                         | -             | -                                                                |
| SAP (Diao et al., 2023)            | -                                                      | -                         | -                                                                | 4                                                                  | $91.4 \pm 0.03$           | $3.1\pm0.03$              | 94.9          | 64.9                                                             |
| PL (Chen et al., 2023)             | $63.5\pm0.03$                                          | $3.6\pm0.03$              | 97.3                                                             | 87.9                                                               | -                         | -                         | -             | -                                                                |
| LRF (Joo et al., 2021)             | $64.0\pm0.31$                                          | $3.1\pm0.31$              | 97.9                                                             | 88.0                                                               | $91.5\pm0.37$             | $3.0\pm0.37$              | 95.1          | 65.8                                                             |
| FP-Backward                        | $66.2\pm0.11$                                          | $0.9\pm0.11$              | 97.9                                                             | 88.0                                                               | $92.8\pm0.15$             | $1.7\pm0.15$              | 95.1          | 65.8                                                             |
| HBGS                               | $67.3\pm0.17$                                          | $-0.2\pm0.17$             | 98.3                                                             | 89.6                                                               | $93.9\pm0.24$             | $0.6 \pm 0.24$            | 95.3          | 66.2                                                             |
| HBGS-B                             | $67.2\pm0.15$                                          | $-0.1\pm0.15$             | 98.1                                                             | 89.4                                                               | $93.7\pm0.22$             | $0.8\pm0.22$              | 95.2          | 66.0                                                             |
| HBGTS                              | $\textbf{67.8} \pm 0.23$                               | $\textbf{-0.7}\pm0.23$    | 98.5                                                             | 89.8                                                               | $94.7 \pm 0.28$           | $\textbf{-0.2}\pm0.28$    | 95.6          | 66.7                                                             |
| HBGTS-B                            | $\underline{67.6}\pm0.21$                              | $\underline{-0.5}\pm0.21$ | 98.4                                                             | 89.7                                                               | $\underline{94.6}\pm0.24$ | $\underline{-0.1}\pm0.24$ | 95.4          | 66.5                                                             |

Table: Performance comparison between different pruning methods on VGG16/CIFAR100 at 98% parameter reduction and ResNet18/CIFAR10 at 95% parameter reduction

- We can clearly see that our methods outperform other pruning algorithms.
- The drop in params and flops is equivalent or more compared to other methods

| Method      | Test Acc<br>(%) | $\begin{array}{c} \mathbf{Acc} \downarrow \\ (\%) \end{array}$ | $\begin{array}{c} \mathbf{Param} \downarrow \\ (\%) \end{array}$ | FLOPs $\downarrow$ (%) | VRAM<br>(GB) |
|-------------|-----------------|----------------------------------------------------------------|------------------------------------------------------------------|------------------------|--------------|
| Dense RN16  | 92.1            | 0                                                              | -                                                                | -                      | 7.62         |
| Dense RN8   | 91.8            | 0                                                              | -                                                                | -                      | 3.91         |
| FP-Backward | 92.9            | -0.8                                                           | 98.5                                                             | 89.9                   | 1.59         |
| HBGS-B      | 93.0            | -0.9                                                           | 98.7                                                             | 92.1                   | 1.55         |
| HBGTS-B     | 93.2            | -1.1                                                           | 98.8                                                             | 94.3                   | 1.51         |

Table: Comparison of pruning methods for ResNext101 32x16d (RN16) and a similar sized dense ResNext101 32x8d (RN8) on CIFAR10 at 98% parameter reduction.

- Our backward method can be used for effectively pruning large models that exceed the capacity of commodity GPUs.
- ResNext101 32x16d has 193 M parameters and requires 7.62 GB of GPU memory for loading.
- We can efficiently deploy the pruned model on edge devices with GPU memory less than 2GB.

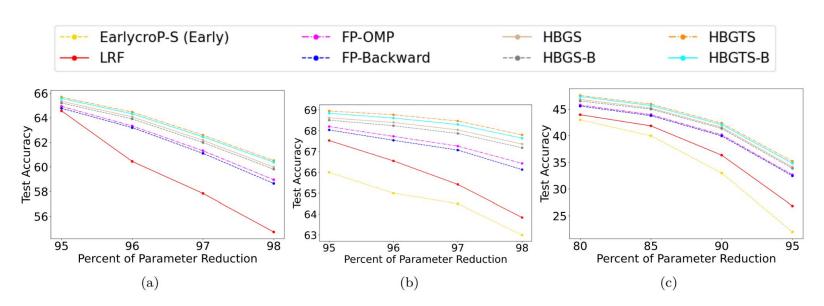


Figure: Test accuracy for (a) ResNet56/CIFAR100 (b) VGG16/CIFAR100 and (c) ResNet18/Tiny-Imagenet with increasing parameter reduction

- We can clearly see that our methods outperform other pruning algorithms.
- As the percentage of parameter reduction increases, the difference in test accuracy between our proposed methods and state-of-the-art methods also grows.

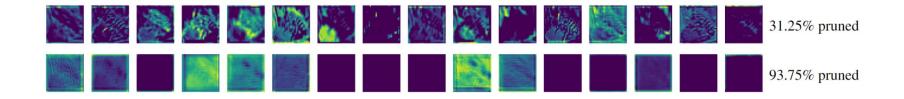


Figure: Visualisation of output feature map of ResNet32 2<sup>nd</sup> layer (top row) and 10<sup>th</sup> layer (bottom row) on CIFAR100

- Feature map of Layer 2 has a diverse set of filter outputs, indicates its usefulness in capturing different features of the inputs. Our HBGTS-B prunes only 31.25% of its filters.
- Feature map outputs of Layer 10 looks very similar, denoting its redundancy in filter outputs. 93.75% of its filters are removed by our HBGTS-B method.

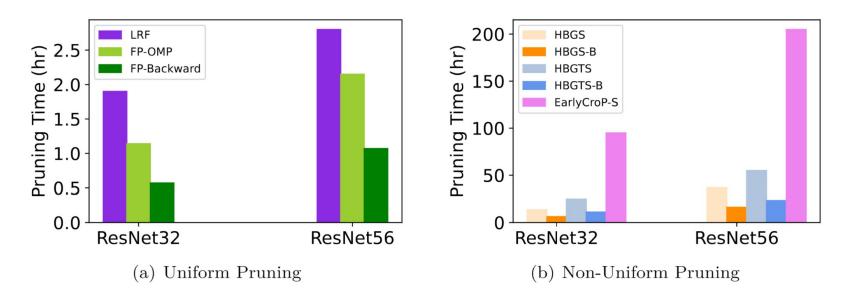


Figure : Time comparison on ResNet/CIFAR10 at 63% parameter reduction.

## Conclusion

- We proposed a hierarchical scheme with two-levels for faster non-uniform pruning.
- FP-OMP and FP-Backward identifies the most appropriate filters to be pruned from each layer.
- HBGS and HBGTS algorithms selects the best layer to currently prune from.



# A Data-Driven Defense against Edge-case Model Poisoning Attacks on Federated Learning

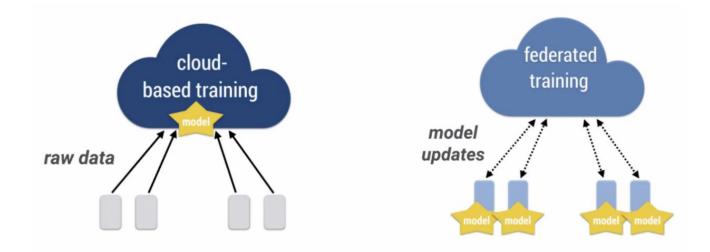
Kiran Purohit, Soumi Das, Sourangshu Bhattacharya and Santu Rana



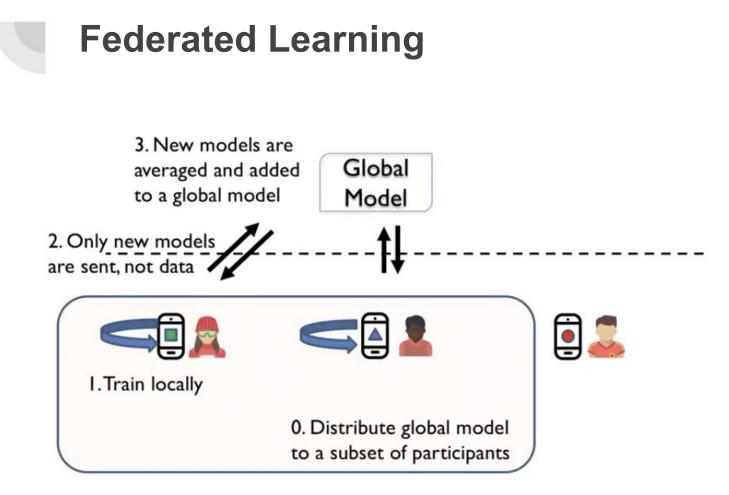
Dept. of Computer Science & Engineering IIT Kharagpur



#### **Fundamental Difference from Centralized**



Goal: Train the ML models at the clients



## **Federated Examples**



*Learning user keyboard behaviors and word selection* 



Personalization of Speech Recognition

Robotic perception



# **Model Poisoning Attacks on FL**

- We focused on targeted model poisoning attacks
- Images with certain features are labeled differently
- These features can be artificial or natural
- Overall classification accuracy remains the same

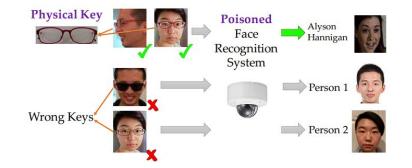


Original image

Single-Pixel Backdoor







#### **Edge-case Attacks are Hard to Detect**

**Proposition**: (Hardness of backdoor detection). Let  $f : \mathbb{R}^n \to \mathbb{R}$  be a ReLU network and  $g : \mathbb{R}^n \to \mathbb{R}$  be a function. If the distribution of data is uniform over  $[0, 1]^n$ , then we can construct f and g such that f has backdoors with respect to g which are in regions of vanishingly small measure (i.e., **edge-cases**). Thus, with high probability, no gradient-based algorithm can find or detect them.

\* Attack of the Tails: Yes, You Really Can Backdoor Federated Learning (NeurIPS 2020)

| Defenses     | CIFA<br>South |        | Sentiment |        |  |
|--------------|---------------|--------|-----------|--------|--|
| Derenses     | MA(%)         | ASR(%) | MA(%)     | ASR(%) |  |
| No Defense   | 86.02         | 65.82  | 80.00     | 100.0  |  |
| Krum         | 82.34         | 59.69  | 79.70     | 38.33  |  |
| Multi-Krum   | 84.47         | 56.63  | 80.00     | 100.0  |  |
| Bulyan       | 84.48         | 60.20  | 79.58     | 30.08  |  |
| Trimmed Mean | 84.42         | 63.23  | 81.17     | 100.0  |  |
| Median       | 62.40         | 37.35  | 78.52     | 99.16  |  |
| RFA          | 84.48         | 60.20  | 80.58     | 100.0  |  |
| NDC          | 84.37         | 64.29  | 80.88     | 100.0  |  |
| NDC adaptive | 84.29         | 62.76  | 80.45     | 99.12  |  |
| Sparsefed    | 84.12         | 27.89  | 79.95     | 29.56  |  |

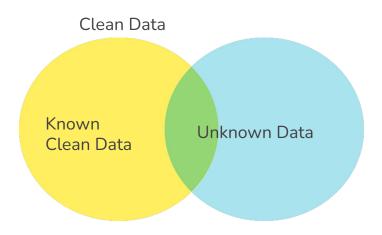


For non-data centric defenses, Attack Success Rate (ASR) is high.

#### **Can Extra Defense Dataset help?**

# Our Defense Dataset

Our defense dataset contains a mix of poisoned and clean examples, with only a few known to be clean.



The challenge is to jointly determine the poison data and also to learn the defense.

## **Overview of DataDefense**

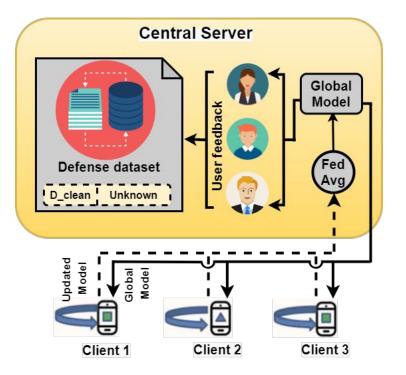


Figure: Overall Scheme of the DataDefense

# Weighted Averaging

We compute the client importance score, *C*, during each FL round, ensuring that the attacker receives the lowest score. This minimizes the attacker's contribution to the global model.

$$\bar{\phi}^t(\theta) = \bar{\phi}^{t-1}(\theta) + \sum_{j=1}^M \mathcal{C}(\phi_j^t, \theta)(\phi_j^t - \bar{\phi}^{t-1}(\theta))$$

where,

$$\sum_{j=1}^{M} \mathcal{C}(\phi_j, \theta) = 1$$
$$\mathcal{C}(\phi_j, \theta) \ge 0$$

## **Overview of DataDefense**

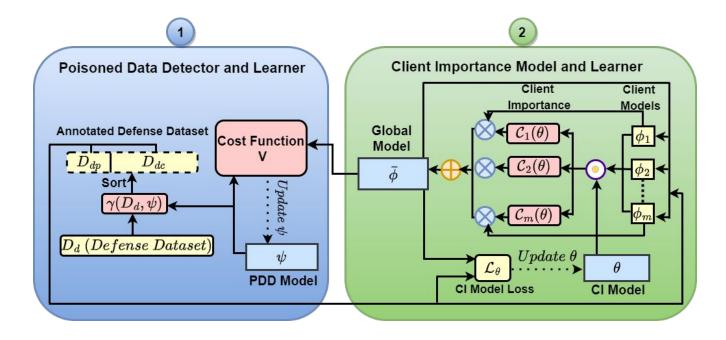


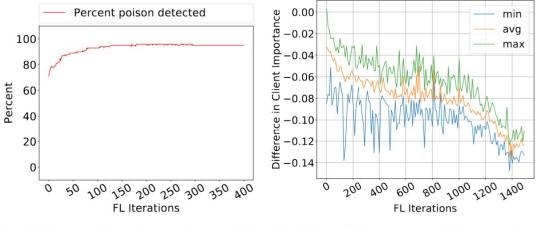
Figure: Architecture Overview of the DataDefense

#### **Effectiveness of DataDefense**

| Defenses     | CIFAR-10<br>Southwest |        | CIFAR-10<br>Trigger Patch |        | CIFAR-100<br>Trigger Patch |        | EMNIST       |        | Sentiment |        |
|--------------|-----------------------|--------|---------------------------|--------|----------------------------|--------|--------------|--------|-----------|--------|
| Derenses     | MA(%)                 | ASR(%) | MA(%)                     | ASR(%) | MA(%)                      | ASR(%) | MA(%)        | ASR(%) | MA(%)     | ASR(%) |
| No Defense   | 86.02                 | 65.82  | 86.07                     | 97.45  | 63.55                      | 100.00 | <u>99.39</u> | 93.00  | 80.00     | 100.0  |
| Krum         | 82.34                 | 59.69  | 81.36                     | 100.00 | 62.63                      | 95.00  | 96.52        | 33.00  | 79.70     | 38.33  |
| Multi-Krum   | 84.47                 | 56.63  | 84.45                     | 76.44  | 63.46                      | 65.00  | 99.13        | 30.00  | 80.00     | 100.0  |
| Bulyan       | 84.48                 | 60.20  | 84.46                     | 100.00 | 63.40                      | 75.00  | 99.12        | 93.00  | 79.58     | 30.08  |
| Trimmed Mean | 84.42                 | 63.23  | 84.43                     | 44.39  | 63.35                      | 70.00  | 98.82        | 27.00  | 81.17     | 100.0  |
| Median       | 62.40                 | 37.35  | 62.16                     | 31.03  | 42.78                      | 20.54  | 95.78        | 21.00  | 78.52     | 99.16  |
| RFA          | 84.48                 | 60.20  | 84.46                     | 97.45  | 62.70                      | 100.00 | 99.34        | 23.00  | 80.58     | 100.0  |
| NDC          | 84.37                 | 64.29  | 84.44                     | 97.45  | 62.90                      | 100.00 | 99.36        | 93.00  | 80.88     | 100.0  |
| NDC adaptive | 84.29                 | 62.76  | 84.42                     | 96.43  | 62.78                      | 95.00  | 99.36        | 87.00  | 80.45     | 99.12  |
| Sparsefed    | 84.12                 | 27.89  | 84.38                     | 11.67  | 61.23                      | 20.36  | 99.28        | 13.28  | 79.95     | 29.56  |
| DataDefense  | 84.49                 | 15.30  | 84.47                     | 2.04   | 63.53                      | 8.34   | 99.37        | 4.00   | 81.34     | 3.87   |

Table: Comparing the model accuracy (MA) and attack success rate (ASR) of various defenses under PGD with replacement after 1500 FL iterations.

#### **Effectiveness of DataDefense**



(a) Poison points detected over FL (b) Client Importance difference beiterations tween attacker and other honest clients

Figure: (a) Percent of detected poison points in D\_d showing the effectiveness of  $\psi$ . (b) Analysis of client importance showing the effectiveness of  $\theta$  under PGD with model replacement attack for CIFAR-10 Southwest

### **Sensitivity of DataDefense**

| Experiments           | Values | MA (%) | <b>ASR</b> (%) |
|-----------------------|--------|--------|----------------|
|                       | 0%     | 84.53  | 3.06           |
| Incorrectly marked    | 5%     | 84.41  | 4.08           |
| images in $D_{clean}$ | 10%    | 84.48  | 3.06           |
|                       | 15%    | 84.47  | 2.04           |
| Fraction of poisoned  | 0.1    | 84.46  | 5.10           |
| points to be detected | 0.2    | 84.47  | 2.04           |
| $(\beta)$             | 0.3    | 84.44  | 11.22          |
| (p)                   | 0.5    | 84.39  | 12.24          |

Table: Sensitivity of DataDefense on  $D_{clean}$  and  $\beta$  under PGD with model replacement attack for CIFAR-10 Trigger Patch dataset.

## Conclusion

- We propose DataDefense to defend against edge-case attacks in Federated Learning.
- Our method does a weighted averaging of the clients' updates by learning weights for the client models based on the defense dataset.
- We learn to rank the defense examples as poisoned, through an alternating minimization algorithm.
- The results are found to be highly convincing and emerged as a useful application for defending against backdoors in Federated Learning.

# THANK YOU FOR YOUR ATTENTION!!!

