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How to make model adapt to new task?



How to make model adapt to new task?



In-Context Learning (ICL)

             Exemplars / In-context examples / demonstration samples
                                    <Question, Explanation, Answer>

Fig: Block Diagram of ICL



Which exemplars to select 
from the training examples?

Due to the financial and performance costs associated with large contexts, 
providing all training exemplars is impractical.



ICL types

E.g. KNN, MMRE.g. LENS (uses LLM output probabilities)

Same exemplars for every test example Different exemplars for every test example



Can we design a method which can work for 
black box models too?



Challenges

1. The number of exemplar-subsets is exponential.

○ Let’s say, we have 5000 training exemplars, and we want a prompt with 5 
exemplars. Possible combinations will lead to 5000C5 (~ 2.5 ∗ 1016) exemplar subsets.

2. Evaluation of each exemplar-subset, is expensive.

○ As it involves LLM inference.



Overall Architecture

* accepted at EMNLP-main (long) 2024 (EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning)

Training exemplars 



Loss Modeling
● Objective: Minimize the number LLM inferences

Scoring Function (σ): Linear function for approximating validation loss based on similarity features 
between exemplars and validation examples. 



Efficient Estimation of parameters (α) 

Challenge: Exponential number of exemplar-subsets

Solution: Learn α and estimate the top-l low-loss subsets in a sample efficient manner

● Update parameters (α) to reduce the approximation error

● Estimating loss (L) here involves LLM calls and equivalent to arm pulling



Explore-Exploit Paradigm



Results and Analysis 

Table: Results across datasets in transfer setting using gpt-3.5-turbo with exemplars selected from Mistral-7b.



Exemplars Transfer Works Well

Table: Results for transfer (T) of exemplars selected using EXPLORA (EXP) on smaller LLMs (Llama2-7b (L) 
and Mistral-7b (M)) to larger LLM (gpt-3.5-turbo).



EXPLORA is resource Efficient

Figure: Frugal exemplar selection by EXPLORA:
LLM calls LENS vs EXPLORA (y-axis) with 
corresponding EM scores indicated on top of bars

Figure: Runtime comparison LENS vs EXPLORA.



Ablation Studies

Table: Ablation studies: exhaustive evaluation, w/o exploration vs proposed exploration (EXPLORA).



Exemplars selected for AquaRat by EXPLORA



Conclusion

● Proposed an efficient and robust task level exemplar subset selection method, EXPLORA, 
that identifies highly informative exemplar subsets.

●
● EXPLORA saves resources by reducing the number of LLM calls, in contrast to the current 

state-of-the-art.
●
● Exemplars selected by EXPLORA on smaller LLMs are well transferred to larger LLMs.
●
● EXPLORA outperforms existing static and dynamic exemplar selection methods.
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Introduction
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Introduction

Network Pruning
Given a pre-trained network Φ(.), the goal is to compress the network while maintaining the high 
performance as much as possible by removing the unnecessary parameters.   

Pre-trained original network Φ(.) Final pruned network Φ’(.) 
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Network Pruning

Weights or Node 
Pruning

❖ Pruning applied to early DNN
❖ Check the importance of each weight or node
❖ Practical acceleration could not be achieved

Filter or Channel 
Pruning

❖ Widely used for modern CNNs
❖ Remove the entire filter or channel at once
❖ Helps the practical acceleration of the network
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Filter Pruning

Non-Uniform Pruning
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Uniform Pruning

❖ Prune filters uniformly from each layer
❖ Process each layer independently and 

sequentially.

❖ Prune different fractions of filters from each layer
❖ All the layers in the network collectively make the 

final prediction



● We developed faster non-uniform pruning methods.
●
● We used a hierarchical scheme with two-levels:
●

○ filter pruning - this step identifies the most appropriate filters to be pruned from each layer. 
○ layer selection - this step selects the best layer to currently prune from. 

We apply these two steps iteratively to achieve a non-uniform pruning. 
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Contribution



Related Work

LRF “Linearly Replaceable Filters for Deep Network Channel Pruning” AAAI 2021

❖ LRF suggests that we can replace the filter that can be approximated by the linear combination of other filters
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Related Work

❖ In a layer, we can approximate each filter as a linear combination of the other filters

           

Here, 𝜖 = approximation error and 𝜆j,l = weight coefficient of the respective filters 

❖ Each 𝜆j,l can be found by solving following minimization problem

            

         Remove the ith filter with the smallest ||𝜖i||  28



FP-OMP for Pruning Multiple Filters

We develop an Orthogonal Matching Pursuit (OMP) based algorithm for selecting retained filters of a layer into S.
Hence filters that are to be pruned are {1,2,...n} \ S. 

 
We can approximate the pruned filters in terms of retained filters.

We pose a sparse approximation problem for finding S and 𝜆

where S is the set of the selected/retained filters in a layer, n is the total number of filter in that layer, and 𝛽 is the pruning fraction                                                                                               
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HBGS for Layer Selection
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Un-Pruned Layer

Pruned Layer

We want to 
minimise the 
difference b/w 
the output 
feature maps of 
pruned and 
unpruned layersInput Image

● We develop Hierarchical Backward Greedy Search (HBGS) for selecting the best layer to currently prune from.
●

● Key idea here is to calculate the relative reconstruction error between the pruned layer output and unpruned layer output
○

○ and then finally choose the layer with minimum error to currently prune from.



HBGTS for Layer Selection

● We develop Hierarchical Backward Greedy Tree Search (HBGTS) for selecting the best layer to currently prune from.
●

● Key idea here is to calculate the error in final layer output, if layer j ∈ {1, ..., C} is pruned 
○

○ and then finally choose the layer with minimum error to currently prune from.
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Results and Analysis 

Table: Performance comparison between different pruning methods on VGG16/CIFAR100 at 98% parameter 
reduction and ResNet18/CIFAR10 at 95% parameter reduction

● We can clearly see that our methods outperform other pruning algorithms.
● The drop in params and flops is equivalent or more compared to other methods
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Table: Comparison of pruning methods for ResNext101 32x16d (RN16)  and a similar sized dense ResNext101 32x8d (RN8) 
on CIFAR10 at 98% parameter reduction.

● Our backward method can be used for effectively pruning large models that exceed the capacity of commodity GPUs.
● ResNext101 32x16d has 193 M parameters and requires 7.62 GB of GPU memory for loading.
● We can efficiently deploy the pruned model on edge devices with GPU memory less than 2GB. 
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Results and Analysis (Cont.)



Results and Analysis (Cont.)
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Figure: Test accuracy for (a) ResNet56/CIFAR100 (b) VGG16/CIFAR100 and (c) ResNet18/Tiny-Imagenet with 
increasing parameter reduction

● We can clearly see that our methods outperform other pruning algorithms.
● As the percentage of parameter reduction increases, the difference in test accuracy between our proposed 

methods and state-of-the-art methods also grows.



Results and Analysis (Cont.)

Figure: Visualisation of output feature map of ResNet32 2nd layer (top row) and 10th layer (bottom row) on CIFAR100

❖ Feature map of Layer 2 has a diverse set of filter outputs, indicates its usefulness in capturing different 
features of the inputs. Our HBGTS-B prunes only 31.25% of its filters. 

❖ Feature map outputs of Layer 10 looks very similar, denoting its redundancy in filter outputs. 93.75% of 
its filters are removed by our HBGTS-B method.
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Results and Analysis (Cont.)

Figure : Time comparison on ResNet/CIFAR10 at 63% parameter reduction.



Conclusion

● We proposed a hierarchical scheme with two-levels for faster non-uniform pruning.
●

● FP-OMP and FP-Backward identifies the most appropriate filters to be pruned from each layer. 
●

● HBGS and HBGTS algorithms selects the best layer to currently prune from. 
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Fundamental Difference from Centralized
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Goal: Train the ML models at the clients



Federated Learning
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Federated Examples
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● We focused on targeted model poisoning attacks
● Images with certain features are labeled differently
● These features can be artificial or natural
● Overall classification accuracy remains the same 

Model Poisoning Attacks on FL



Edge-case Attacks are Hard to Detect

Proposition: (Hardness of backdoor detection). Let f : Rn → R be a ReLU network and g : Rn → R be a function. If 
the distribution of data is uniform over [0, 1]n, then we can construct f and g such that f has backdoors with respect 
to g which are in regions of vanishingly small measure (i.e., edge-cases). Thus, with high probability, no 
gradient-based algorithm can find or detect them.  

* Attack of the Tails: Yes, You Really Can Backdoor Federated Learning (NeurIPS 2020)

   For non-data centric defenses, Attack Success Rate (ASR) is high.    
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 Therefore 
there is a 
need for 

Data centric 
defenses!!



Can Extra Defense Dataset help?
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Our Defense Dataset

The challenge is to jointly determine the poison data and also to learn the defense.
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Known 
Clean Data

Clean Data

Unknown Data

Our defense dataset contains a mix of poisoned and clean examples, with only a few 
known to be clean.



Overview of DataDefense
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Figure: Overall Scheme of the DataDefense



Weighted Averaging
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We compute the client importance score, 𝐶, during each FL round, ensuring that the attacker 
receives the lowest score. This minimizes the attacker's contribution to the global model.

where,
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Figure: Architecture Overview of the DataDefense

Overview of DataDefense
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Effectiveness of DataDefense

Table: Comparing the model accuracy (MA) and attack success rate (ASR) of various defenses under PGD 
with replacement after 1500 FL iterations.
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Effectiveness of DataDefense

Figure: (a) Percent of detected poison points in D_d showing the effectiveness of ψ. (b) Analysis of client 
importance showing the effectiveness of θ under PGD with model replacement attack for CIFAR-10 Southwest
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Sensitivity of DataDefense

Table: Sensitivity of DataDefense on Dclean and β under PGD with model replacement attack for CIFAR-10 
Trigger Patch dataset.
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Conclusion

● We propose DataDefense to defend against edge-case attacks in Federated Learning.
● Our method does a weighted averaging of the clients' updates by learning weights for the client 

models based on the defense dataset.
● We learn to rank the defense examples as poisoned, through an alternating minimization 

algorithm.
● The results are found to be highly convincing and emerged as a useful application for 

defending against backdoors in Federated Learning.
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