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How to make model adapt to new task?
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How to make model adapt to new task?
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PROMPT

COMPLETION

In-Context Learning (ICL)

Task
Instruction

Task
Exemplars

Response

I:>

<:l

LLM

—

Fig: Block Diagram of ICL

PROMPT TEMPLATE

Instruction

You are a helpful assistant helping to solve tasks requiring reasoning.
Follow given examples and solve the problem in step by step manner.

Exemplar

are in proportion 3:5:7. What is the age in years of the youngest boy?
[Explanation]: 3x + 5x + 7x =45, x=3,3x =9

[Answer]: The answer is 9

Query

[Question]: John found that the average of 15 numbers is 40. If 10 is
added to each number then the mean of the number is?

MISTRAL

AI_

[Question]: The average age of three boys is 45 years and their ages\

- un

Exemplars / In-context examples / demonstration samples
<Question, Explanation, Answer>

Response

[Explanation]: (x0+x1+...x14)/15 = 40,
new_mean =40 + 10 = 50

[Answer]: The answer is 50




Which exemplars to select
from the training examples?

Due to the financial and performance costs associated with large contexts,
providing all training exemplars is impractical.



ICL types

ICL Demonstration sample
Selection

Same exemplars for every test example Different exemplars for every test example

Static } ( Dynamic

E.g. LENS (uses LLM output probabilities) E.g. KNN, MMR




Can we design a3 method which can work for
black box models too?



Challenges

1. The number of exemplar-subsets is exponential.
o Let's say, we have 5000 training exemplars, and we want a prompt with 5
exemplars. Possible combinations will lead to >°%°C, (~ 2.5 * 10*°) exemplar subsets.
2. Evaluation of each exemplar-subset, is expensive.

o Asitinvolves LLM inference.



Overall Architecture

Training exemplars

Exemplars

p; : While purchasing groceries ram bought 5 apples ...
p, : Ephraim has two machines that make necklaces ...

Exemplar clusters

U (Sampling with

replacement)

Approx. error based
parameter update

o(a,.)

scorer

| Z N
: _>‘ LLM loss I

U (Low — Loss
subsets)

* accepted at EMNLP-main (long) 2024 (EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning)



Loss Modeling

e Objective: Minimize the number LLM inferences

Scoring Function (0): Linear function for approximating validation loss based on similarity features

between exemplars and validation examples.

Any transformer based encoder

Subset of k Exemplars (S C S)

¢ ()" ¢ (uj)

(]

16 (@) lé(u) |

ith exemplar, z; € S

ith validation sample, u; € V

Loss modelling function;
Approximating L(S, V)

' 5 N

0@ §)= SN e S)E; W)

j=1i=1

ith exemplars contribution, low if important exemplar




Efficient Estimation of parameters (a)

Challenge: Exponential number of exemplar-subsets
Solution: Learn a and estimate the top-l low-loss subsets in a sample efficient manner

e Update parameters (a) to reduce the approximation error

e Estimating loss (L) here involves LLM calls and equivalent to arm pulling

set of | subsets at timestep t with lowest validation loss Validation Set

L@ U, Vi)=Y (LISV)-0(@8)? + Y (LS, V) —o(@, §))>
SeU; S'~Vy

Remaining subsets; ; < U/ \ U;, wheretf ¢ S  Negative samples from high-loss set V;




Explore-Exploit Paradigm

Algorithm EXPLORA

1t Input: 4 C S: > Initial exemplar subsets

> Initialize: Uy < set of random [ subsets from U

3 t<+0

4 a«+ N(0,1) > Sampling from a gaussian

s whilet < T do

6 Let Vi < U\ U,

7 at < ming L(&, Uz, Vi) .

8 S; = argminggy, o(ai, S) > Lowest loss
_subset

9 S; = argmaxg,, o(ay, S) > Highest loss
subset ~

10 if o(ai,S;) < o(ai, Si) then

11 Ug < U \ {S:} > Remove S,

12 Ut+1 < Ut 1 {S:(} > add S;(

13 end

14 t+—t+1

15 end
16 Output: Ur;Set of [ subsets from &/ which have the
lowest validation loss




Results and Analysis

Method GSMSK AquaRat TabMWP FinQA StrategyQA
GPT-3.5-turbo

dynamic

KNN (Rubin et al., 2022) 53.45 51.96 77.07 5152 81.83

KNN (S-BERT) (Rubin et al., 2022) 53.07 5275 77.95 52.65 81.83

MMR (Ye et al., 2023b) 54.36 51.18 77.32 49.87 82.86

KNN+SC (Wang et al., 2023c) 80.21 62.59 83.08 54.49 83.88

MMR+SC (Wang et al., 2023c) 78.01 59.45 81.36 50.74 83.88

PromptPG (Lu et al., 2023b) - - 68.23 53.56 -

static

Zero-Shot COT (Kojima et al., 2023) 67.02 49.60 57.10 47.51 59.75

Manual Few-Shot COT (Wei et al., 2023)  73.46 44.88 71.22 5222 73.06

Random 67.79 49.80 55.89 53.70 81.02

PS+ (Wang et al., 2023b) 59.30 46.00 - - -

Auto-COT (Zhang et al., 2023b) 57.10 41.70 - - 71.20

GraphCut (Iyer and Bilmes, 2013) 66.19 47.24 60.45 52:31 80.00

FacilityLocation (Iyer and Bilmes, 2013)  68.61 48.43 67.66 36.79 81.63

LENS (Li and Qiu, 2023) 69.37 48.82 7727 54.75 79.79

LENS+SC (Li and Qiu, 2023) 79.37 57.87 80.68 60.06 82.24

Our Approach

EXPLORA 77.86(a12.24%) +  53.54(49.67%)1t 83.07a7.51%) 1 59.46(48.60%) t 85.71(a5.63%) t

EXPLORA+SC 86.35(424.48%) 1t  63.39(429.84%)t  85.52(110.68%)1 64.52(a17.84%)t 87.14 (49.21%)+t

EXPLORA+KNN+SC 85.14 (a22.73%)1  62.20a27.41%)t  86.29(a12.39%) 1  65.12(118.94%)+ 88.37(410.75%)1

EXPLORA+MMR+SC 86.13(424.16%) 1  63.78430.64%) 1 86.96(a12.54%)1  64.60417.99%) 1  87.55(»9.73%)t
GPT-40

LENS (Li and Qiu, 2023) 76.19 64.56 86.34 69.31 92.85

EXPLORA 93.63 69.29 90.12 72.71 95.10

Table: Results across datasets in transfer setting using gpt-3.5-turbo with exemplars selected from Mistral-7b.



Exemplars Transfer Works Well

Method T GSM Aqua Tab Fin Strat
EXP L 79.07 5394 80.11 54.66 8531
M 7786 53.54 83.07 59.46 85.71
EXP+SC L 8582 63.78 86.76 61.16 85.10
M 8635 6339 8552 6452 87.14
EXP+KNN+SC L 8589 64.17 85.74 63.64 86.53
M 8514 6220 86.29 65.12 88.37
EXP+MMR+SC L 8620 6299 87.81 64.60 86.12
M 86.13 63.78 86.96 64.60 87.55

Table: Results for transfer (T) of exemplars selected using EXPLORA (EXP) on smaller LLMs (Llama2-7b (L)
and Mistral-7b (M)) to larger LLM (gpt-3.5-turbo).



EXPLORA is resource Efficient

Number of LLM Calls (in 10%)
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Figure: Frugal exemplar selection by EXPLORA:
LLM calls LENS vs EXPLORA (y-axis) with
corresponding EM scores indicated on top of bars
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Ablation Studies

Datasets GSM Aqua Tab Fin  Strat

Exhaustive eval 76.72 50.39 8224 57.02 82.45

EXPLORA (-exploration) 75.89 50.00 75.16 50.30 80.40
(Mistral)

EXPLORA (Llama) 79.07 5394 80.11 54.66 85.31

EXPLORA (Mistral) 7786 53.54 83.07 59.46 85.71

Table: Ablation studies: exhaustive evaluation, w/o exploration vs proposed exploration (EXPLORA).



Exemplars selected for AQuaRat by EXPLORA

Question: The average age of three boys is 15 years and their ages are in proportion 3:5:7. What is the
age in years of the youngest boy?

Options: [’A)9’, ’B)10’,°C)11°,°’D)12’, ’E)13’]

Rationale:3x + 5x + 7x =45, x =3, 3x =9 Answer: A

Question: Can you deduce the pattern and find the next number in the series? 6, 14, 26, 98?

Options: [’A)276’°, ’B)277’, °C)278’, °D)279’, ’E)None of these’]]

Rationale: 6 = 11 + 21 + 31,14 = 12 + 22 4 32,36 = 13 4+ 23 + 33,98 = 14 4 2% 4+ 3% Thus the next
number Answer: A

Question:In covering a distance of 42 km, A takes 2 hours more than B. If A doubles his speed, then he
would take 1 hour less than B. A’s speed is:?

Options: ’A)S5 km/h’, °B)7 km/h’, ’C)10 km/h’, ’D)15 km/h’, ’E)25 km/h’ Rationale: Let A’s speed be
X km/hr. Then, 42/x - 42/2x = 3 6x =42 x = 7 km/hr Answer: B

Question:Find the number which when multiplied by 15 is increased by 196.

Options: 'A)14°, °B)20’, °C)26’°, 'D)28’, ’E)30’ Rationale: Solution Let the number be x . Then, 15x -
X =196 <=14x =196 x <=> 14 Answer: A

Question: A certain sum of money at simple interest amounted Rs.980 in 3 years at 5% per annum,
find the sum?

Options: *A)867’, ’B)855’, °C)299’, °D)852’, ’E)903’ Rationale: 980 = P [1 + (3*5)/100] P = 852
Answer: D



Conclusion

e Proposed an efficient and robust task level exemplar subset selection method, EXPLORA,
that identifies highly informative exemplar subsets.

e EXPLORA saves resources by reducing the number of LLM calls, in contrast to the current
state-of-the-art.

e Exemplars selected by EXPLORA on smaller LLMs are well transferred to larger LLMs.

e EXPLORA outperforms existing static and dynamic exemplar selection methods.
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Introduction

Burden of CNNs Filter Pruning
——ResNet-152 ——Benefits

231MB storage spaces; usage

a 4 N
60.2 million parameters and} reduces the storage
N\

\
7

Y4
AN

decreases the memory

380MB memory footprint footprint

/
4

Y
Y
A

11.3 billion float point

operations (FLOPS). accelerates the inference

\. >,
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Introduction

Network Pruning
Given a pre-trained network ®(.), the goal is to compress the network while maintaining the high
performance as much as possible by removing the unnecessary parameters.

Pre-trained original network ®(.) Final pruned network @’(.)

23



Network Pruning

Weights or Node
Pruning

< Pruning applied to early DNN
< Check the importance of each weight or node
< Practical acceleration could not be achieved

Filter or Channel
Pruning

< Widely used for modern CNNs
< Remove the entire filter or channel at once
< Helps the practical acceleration of the network

24



Filter Pruning

L

Uniform Pruning

< Prune filters uniformly from each layer
< Process each layer independently and
sequentially.

A

Non-Uniform Pruning

Prune different fractions of filters from each layer
All the layers in the network collectively make the
final prediction

25



Contribution

e \We developed faster non-uniform pruning methods.
e \We used a hierarchical scheme with two-levels:

o filter pruning - this step identifies the most appropriate filters to be pruned from each layer.
o layer selection - this step selects the best layer to currently prune from.

We apply these two steps iteratively to achieve a non-uniform pruning.

Is desired
pruning criteria
achieved?

Greedy Layer “ N )
Selection —> u U'LLH
e ﬁ

Filters of Filters to prune using Remaining
selected Layer sparse approximation Filters

Pretrained Model Layer Selected Efficient Model



Related Work

LRF “Linearly Replaceable Filters for Deep Network Channel Pruning” AAAI 2021

Input Feature Map Pruning Target Filter Output Feature Map
(K x K convolution layer)

Q
// /,/: 4 -
/A ‘ /

/' A y ) o
[ A [ A Linear Combination
y | Yy = i
Fi |4 o+ [Fim ‘ me W, [ Fa [ of Other Filters

y | i 4
X1 X iy X g X An

< LRF suggests that we can replace the filter that can be approximated by the linear combination of other filters

27



Related Work

R

< In a layer, we can approximate each filter as a linear combination of the other filters

fog = 2z diafa t €

Here, € = approximation error and Ajl = weight coefficient of the respective filters

< Each ).j'l can be found by solving following minimization problem

cart OO ARSI TE S 1 | £

N 4 €

Remove the i*" filter with the smallest Il

28



FP-OMP for Pruning Multiple Filters

We develop an Orthogonal Matching Pursuit (OMP) based algorithm for selecting retained filters of a layer into S.
Hence filters that are to be pruned are {1,2,..n}\ S.

We can approximate the pruned filters in terms of retained filters.

f:,j = Z)\j,lf:,l +€j7vj g S

les

We pose a sparse approximation problem for finding S and A

§* X =argmingi < gy DI = D MLl

j€{1,2,..,n} les

where S is the set of the selected/retained filters in a layer, n is the total number of filter in that layer, and 8 is the pruning fraction

29



HBGS for Layer Selection

e  We develop Hierarchical Backward Greedy Search (HBGS) for selecting the best layer to currently prune from.
° Key idea here is to calculate the relative reconstruction error between the pruned layer output and unpruned layer output

o and then finally choose the layer with minimum error to currently prune from.

We want to
minimise the
difference b/w
the output
feature maps of
pruned and
unpruned layers

Un-Pruned Layer

Pruned Layer

Input Image

30



HBGTS for Layer Selection

0)

Input
Image

0)

Key idea here is to calculate the error in final layer output, if layer j € {1, ..., C} is pruned

o and then finally choose the layer with minimum error to currently prune from.

Layer-1 Layer-2 Layer-3
Pruned Pruned Pruned
Layer 1) Layer (2) Layer

(0) (0)
Un-Pruned Un-Pruned (1) Un-Pruned
Layer (0) Layer 0) Layer

Layer (3) Pruned

Layer (2) Pruned
Layer (1) Pruned

(0) - No Pruning

Classification
Layer

We develop Hierarchical Backward Greedy Tree Search (HBGTS) for selecting the best layer to currently prune from.

31



Results and Analysis

VGG16/CIFAR100 @ 98% ResNet18/CIFAR10 @ 95%

Method Test Acc Acc | Param | FLOPs | | Test Acc Acc | Param | FLOPs |

(%) (%) (%) (%) (%) (%) (%) (%)
Dense 67.1+0.01 0+0 - - 94.5 1+ 0.02 0+0 - -
Random 55.5 £0.16 11.6 £ 0.16 98.0 86.0 86.3 £ 0.06 8.2 £0.06 93.7 65.0
EarlyCroP-S (Rachwan et al., 2022) 62.8 +£0.52 4.3 +0.52 97.9 88.0 91.0 £0.52 3.5 +0.52 95.1 65.8
DLRFC (He et al., 2022) 63.5 £ 0.09 3.56 £ 0.09 97.1 53.7 - - - -
SAP (Diao et al., 2023) - - - - 91.4 £0.03 3.1£0.03 94.9 64.9
PL (Chen et al., 2023) 63.5 £ 0.03 3.6 £0.03 97.3 87.9 - - - -
LRF (Joo et al., 2021) 64.0 £0.31 3.1+0.31 97.9 88.0 91.5 +0.37 3.0+£0.37 95.1 65.8
FP-Backward 66.2 +0.11 0.9 £0.11 97.9 88.0 92.8 £0.15 1.7+0.15 95.1 65.8
HBGS 67.3 £0.17 —-0.240.17 98.3 89.6 93.9 £0.24 0.6 £0.24 95.3 66.2
HBGS-B 67.2+0.15 —-0.1£0.15 98.1 89.4 93.7 £0.22 0.8 £0.22 95.2 66.0
HBGTS 67.8+023 -0.7+0.23 98.5 89.8 94.7+0.28  -0.240.28 95.6 66.7
HBGTS-B 67.6+0.21  —0.5+0.21 98.4 89.7 9464024 —01+024 954 66.5

Table: Performance comparison between different pruning methods on VGG16/CIFAR100 at 98% parameter
reduction and ResNet18/CIFAR10 at 95% parameter reduction

e  We can clearly see that our methods outperform other pruning algorithms.
e Thedrop in params and flops is equivalent or more compared to other methods



Results and Analysis (Cont.)

Test Acc Acc| Param | FLOPs] VRAM

Method %) (%) (%) (%)  (GB)
Dense RN16 92.1 0 - - 7.62
Dense RNS8 91.8 0 - - 3.91
FP-Backward 92.9 -0.8 98.5 &9.9 1.59
HBGS-B 93.0 -0.9 98.7 92.1 1.55
HBGTS-B 93.2 -1.1 98.8 94.3 1.51

Table: Comparison of pruning methods for ResNext101 32x16d (RN16) and a similar sized dense ResNext101 32x8d (RN8)
on CIFAR10 at 98% parameter reduction.

e  Our backward method can be used for effectively pruning large models that exceed the capacity of commodity GPUs.
° ResNext101 32x16d has 193 M parameters and requires 7.62 GB of GPU memory for loading.
e  We can efficiently deploy the pruned model on edge devices with GPU memory less than 2GB.
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Results and Analysis (Cont.)

EarlycroP-S (Early) =~ FP-OMP HBGS ~ws= HBGIS
wm=< LRF --e-- FP-Backward --e-- HBGS-B HBGTS-B
661 .
64 =
68

N
~

(6,]

Test Accuracy
Ul (o)) ()}
© O

Test Accuracy
[o)] g o))

ul

()]
[e)]
S

[2)]
w

85 90 95
Percent of Parameter Reduction

95 96 97 98 95 96 97 98 80
Percent of Parameter Reduction Percent of Parameter Reduction

(a) (b) (c)

Figure: Test accuracy for (a) ResNet56/CIFAR100 (b) VGG16/CIFAR100 and (c) ResNetl18/Tiny-lmagenet with
increasing parameter reduction

e  We can clearly see that our methods outperform other pruning algorithms.
As the percentage of parameter reduction increases, the difference in test accuracy between our proposed

methods and state-of-the-art methods also grows.
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Results and Analysis (Cont.)

r |\ X
‘v ' A 31.25% pruned
*a '-
F 93.75% pruned

Figure: Visualisation of output feature map of ResNet32 2" layer (top row) and 10% layer (bottom row) on CIFAR100

< Feature map of Layer 2 has a diverse set of filter outputs, indicates its usefulness in capturing different
features of the inputs. Our HBGTS-B prunes only 31.25% of its filters.

< Feature map outputs of Layer 10 looks very similar, denoting its redundancy in filter outputs. 93.75% of
its filters are removed by our HBGTS-B method.
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Results and Analysis (Cont.)

2.5 1

(a) Uniform Pruning

B LRF 2001 HBGS
[ FP-OMP - o HBGS-B
B FP-Backward < HBGTS
o 1501 mm HBGTS-B
E [ EarlyCroP-S
|_
- 100
c
|=
S5 501
o
0- 04
ResNet32 ResNet56 ResNet32 ResNet56

(b) Non-Uniform Pruning

Figure : Time comparison on ResNet/CIFAR10 at 63% parameter reduction.
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Conclusion

e \We proposed a hierarchical scheme with two-levels for faster non-uniform pruning.

e FP-OMP and FP-Backward identifies the most appropriate filters to be pruned from each layer.

e HBGS and HBGTS algorithms selects the best layer to currently prune from.
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Fundamental Difference from Centralized

federated

based training training

raw dato // \\

Goal: Train the ML models at the clients

model

updates :.-'"
oy

39



Federated Learning

3. New models are
averaged and added = Global |
to a global model Model |

(=Ba <82 B2

|.Train locally

0. Distribute global model
\_ to a subset of participants )




Federated Examples

Learning user keyboard behaviors

>

Wi and word selection

QWERTY U I'OP

ASDFGHUJKL
4 ZXCVBNMGEGE

'@

Personalization
of Speech Recognition

Robotic perception

41



Model Poisoning Attacks on FL

l Introduce a backdoor

Model
We focused on targeted model poisoning attacks
Images with certain features are labeled differently *
These features can be artificial or natural
Overall classification accuracy remains the same ﬂ 2y T2 1\ ! .‘! ¢¢‘} ’ l

\l;‘ll m.il'll 1

Original image Single-Pixel Backdoor Physical Ke

Poisoned P
Face Hannigan

Recognih'.on

System
: > Person 1 Q

S—4
P
Person 2 n

/B

R,

Wrong Keys
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Edge-case Attacks are Hard to Detect

Proposition: (Hardness of backdoor detection). Let f: R” — R be a ReLU network and g : R" — R be a function. If
the distribution of data is uniform over [0, 1]", then we can construct f and g such that f has backdoors with respect
to g which are in regions of vanishingly small measure (i.e., edge-cases). Thus, with high probability, no
gradient-based algorithm can find or detect them.

* Attack of the Tails: Yes, You Really Can Backdoor Federated Learning (NeurlPS 2020)

CIFAR-10

Sentiment /\

Defenses Southwest v
MA(%) |ASR(%)| | MA(%) JASR(%)

No Defense 86.02 65.82 80.00 100.0
Kirum 8234 | 5969 || 7970 | 3833 Therefore
Multi-Krum 84.47 56.63 80.00 100.0 there is a
Bulyan 84.48 60.20 79.58 30.08
Trimmed Mean 84.42 63.23 81.17 100.0 need fOl'.
Median 6240 | 3735 || 7852 | 99.16 Data centric
RFA 84.48 60.20 80.58 100.0 defenses!!
NDC 84.37 64.29 80.88 100.0
NDC adaptive 84.29 62.76 80.45 99.12 -
Sparsefed 84.12 27.89 79.95 29.56

For non-data centric defenses, Attack Success Rate (ASR) is high.
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Can Extra Defense Dataset help?

44



Our Defense Dataset

Our defense dataset contains a mix of poisoned and clean examples, with only a few
known to be clean.

Clean Data

Known

Clean Data Unknown Data

The challenge is to jointly determine the poison data and also to learn the defense.

45



Overview of DataDefense

Central Server

Global

Client 1 Client 2 Client 3

Figure: Overall Scheme of the DataDefense
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Weighted Averaging

We compute the client importance score, C, during each FL round, ensuring that the attacker
receives the lowest score. This minimizes the attacker's contribution to the global model.

M

¢'(0) ="~ (0) + ) C(¢5,0)(d5 — ¢~ (0))

g=i

where,

M C(¢;,6) = 1

47



Overview of DataDefense

O,

L2

ﬂoisoned Data Detector and Learneﬁ _

Client Importance Model and Learner

Annotated Defense Dataset

e

! de-l D g

[Dd (Defense Dataset)]

\

Client

Client
Importance Models

Global

Cost Function Model
‘ v |‘ ] »
Ay

v 230pd )

v

¢

<

PDD M

A -
odel

Cl Model

»~
Cl Model Loss
//

Figure: Architecture Overview of the DataDefense
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Effectiveness of DataDefense

CIFAR-10 CIFAR-10 CIFAR-100 :
Balrises Southwest Trigger Patch Trigger Patch ENINISI Aentingent
MA(%) ASR(%) | MA(%) ASR(%) | MA(%) ASR(%) | MA(%) ASR(%) | MA(%) ASR(%)

No Defense 86.02 65.82 86.07 97.45 63.55 100.00 99.39 93.00 80.00 100.0
Krum 82.34 59.69 81.36 100.00 62.63 95.00 96.52 33.00 79.70 38.33
Multi-Krum 84.47 56.63 84.45 76.44 63.46 65.00 99.13 30.00 80.00 100.0
Bulyan 84.48 60.20 84.46 100.00 63.40 75.00 99.12 93.00 79.58 30.08
Trimmed Mean | 84.42 63.23 84.43 44.39 63.35 70.00 98.82 27.00 81.17 100.0
Median 62.40 3735 62.16 31.03 42.78 20.54 95.78 21.00 78.52 99.16
RFA 84.48 60.20 84.46 97.45 62.70 100.00 99.34 23.00 80.58 100.0
NDC 84.37 64.29 84.44 97.45 62.90 100.00 99.36 93.00 80.88 100.0
NDC adaptive 84.29 62.76 84.42 96.43 62.78 95.00 99.36 87.00 80.45 99.12
Sparsefed 84.12 27.89 84.38 11.67 61.23 20.36 99.28 13.28 79.95 29.56
DataDefense 84.49 15.30 84.47 2.04 63.53 8.34 99.37 4.00 81.34 3.87

Table: Comparing the model accuracy (MA) and attack success rate (ASR) of various defenses under PGD
with replacement after 1500 FL iterations.
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Effectiveness of DataDefense
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(a) Poison points detected over FL. (b) Client Importance difference be-
iterations tween attacker and other honest clients

Figure: (a) Percent of detected poison points in D_d showing the effectiveness of y. (b) Analysis of client
importance showing the effectiveness of 8 under PGD with model replacement attack for CIFAR-10 Southwest



Sensitivity of DataDefense

Experiments Values MA (%) ASR (%)
0% 84.53 3.06
Incorrectly marked 5% 84.41 4.08
images in D¢jcan 10% 84.48 3.06
15% 84.47 2.04
Fraction of poisoned O o 2:10
. Lk 0.2 84.47 2.04
points to be detected 03 R4 44 11.22
B) 0.5 8439 12.24

Table: Sensitivity of DataDefense on D

Trigger Patch dataset.

clean

and B under PGD with model replacement attack for CIFAR-10
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Conclusion

e We propose DataDefense to defend against edge-case attacks in Federated Learning.

e Our method does a weighted averaging of the clients' updates by learning weights for the client
models based on the defense dataset.

e We learn to rank the defense examples as poisoned, through an alternating minimization
algorithm.

e The results are found to be highly convincing and emerged as a useful application for
defending against backdoors in Federated Learning.
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