
Application of Subset Selection in Robust and
Efficient Machine Learning

Online Research Development Program on
Exploring AI and ML Applications

Kiran Purohit (PhD Scholar)

Advisor: Prof. Sourangshu Bhattacharya

Dept. of CSE, IIT Kharagpur

Outline

1. EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning (EMNLP-main (long) 2024)

2. A Greedy Hierarchical Approach to Whole-Network Filter-Pruning in CNNs (TMLR 2024)

3. A Data-Driven Defense against Edge-case Model Poisoning Attacks on Federated Learning (ECAI 2024)

EXPLORA: Efficient Exemplar Subset Selection for
Complex Reasoning

Kiran Purohit, Venktesh V, Raghuram Devalla, Krishna Mohan Yerragorla,
Sourangshu Bhattacharya, Avishek Anand

Dept. of Computer Science & Engineering
IIT Kharagpur

How to make model adapt to new task?

How to make model adapt to new task?

In-Context Learning (ICL)

 Exemplars / In-context examples / demonstration samples
 <Question, Explanation, Answer>

Fig: Block Diagram of ICL

Which exemplars to select
from the training examples?

Due to the financial and performance costs associated with large contexts,
providing all training exemplars is impractical.

ICL types

E.g. KNN, MMRE.g. LENS (uses LLM output probabilities)

Same exemplars for every test example Different exemplars for every test example

Can we design a method which can work for
black box models too?

Challenges

1. The number of exemplar-subsets is exponential.

○ Let’s say, we have 5000 training exemplars, and we want a prompt with 5
exemplars. Possible combinations will lead to 5000C5 (~ 2.5 ∗ 1016) exemplar subsets.

2. Evaluation of each exemplar-subset, is expensive.

○ As it involves LLM inference.

Overall Architecture

* accepted at EMNLP-main (long) 2024 (EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning)

Training exemplars

Loss Modeling
● Objective: Minimize the number LLM inferences

Scoring Function (σ): Linear function for approximating validation loss based on similarity features
between exemplars and validation examples.

Efficient Estimation of parameters (α)

Challenge: Exponential number of exemplar-subsets

Solution: Learn α and estimate the top-l low-loss subsets in a sample efficient manner

● Update parameters (α) to reduce the approximation error

● Estimating loss (L) here involves LLM calls and equivalent to arm pulling

Explore-Exploit Paradigm

Results and Analysis

Table: Results across datasets in transfer setting using gpt-3.5-turbo with exemplars selected from Mistral-7b.

Exemplars Transfer Works Well

Table: Results for transfer (T) of exemplars selected using EXPLORA (EXP) on smaller LLMs (Llama2-7b (L)
and Mistral-7b (M)) to larger LLM (gpt-3.5-turbo).

EXPLORA is resource Efficient

Figure: Frugal exemplar selection by EXPLORA:
LLM calls LENS vs EXPLORA (y-axis) with
corresponding EM scores indicated on top of bars

Figure: Runtime comparison LENS vs EXPLORA.

Ablation Studies

Table: Ablation studies: exhaustive evaluation, w/o exploration vs proposed exploration (EXPLORA).

Exemplars selected for AquaRat by EXPLORA

Conclusion

● Proposed an efficient and robust task level exemplar subset selection method, EXPLORA,
that identifies highly informative exemplar subsets.

●
● EXPLORA saves resources by reducing the number of LLM calls, in contrast to the current

state-of-the-art.
●
● Exemplars selected by EXPLORA on smaller LLMs are well transferred to larger LLMs.
●
● EXPLORA outperforms existing static and dynamic exemplar selection methods.

20

A Greedy Hierarchical Approach to
Whole-Network Filter-Pruning in CNNs

Kiran Purohit, Anurag Parvathgari and Sourangshu Bhattacharya

Dept. of Computer Science & Engineering
IIT Kharagpur

Introduction

22

Introduction

Network Pruning
Given a pre-trained network Φ(.), the goal is to compress the network while maintaining the high
performance as much as possible by removing the unnecessary parameters.

Pre-trained original network Φ(.) Final pruned network Φ’(.)

23

Network Pruning

Weights or Node
Pruning

❖ Pruning applied to early DNN
❖ Check the importance of each weight or node
❖ Practical acceleration could not be achieved

Filter or Channel
Pruning

❖ Widely used for modern CNNs
❖ Remove the entire filter or channel at once
❖ Helps the practical acceleration of the network

24

Filter Pruning

Non-Uniform Pruning

25

Uniform Pruning

❖ Prune filters uniformly from each layer
❖ Process each layer independently and

sequentially.

❖ Prune different fractions of filters from each layer
❖ All the layers in the network collectively make the

final prediction

● We developed faster non-uniform pruning methods.
●
● We used a hierarchical scheme with two-levels:
●

○ filter pruning - this step identifies the most appropriate filters to be pruned from each layer.
○ layer selection - this step selects the best layer to currently prune from.

We apply these two steps iteratively to achieve a non-uniform pruning.

26

Contribution

Related Work

LRF “Linearly Replaceable Filters for Deep Network Channel Pruning” AAAI 2021

❖ LRF suggests that we can replace the filter that can be approximated by the linear combination of other filters

27

Related Work

❖ In a layer, we can approximate each filter as a linear combination of the other filters

Here, 𝜖 = approximation error and 𝜆j,l = weight coefficient of the respective filters

❖ Each 𝜆j,l can be found by solving following minimization problem

 Remove the ith filter with the smallest ||𝜖i|| 28

FP-OMP for Pruning Multiple Filters

We develop an Orthogonal Matching Pursuit (OMP) based algorithm for selecting retained filters of a layer into S.
Hence filters that are to be pruned are {1,2,...n} \ S.

We can approximate the pruned filters in terms of retained filters.

We pose a sparse approximation problem for finding S and 𝜆

where S is the set of the selected/retained filters in a layer, n is the total number of filter in that layer, and 𝛽 is the pruning fraction

29

HBGS for Layer Selection

30

Un-Pruned Layer

Pruned Layer

We want to
minimise the
difference b/w
the output
feature maps of
pruned and
unpruned layersInput Image

● We develop Hierarchical Backward Greedy Search (HBGS) for selecting the best layer to currently prune from.
●

● Key idea here is to calculate the relative reconstruction error between the pruned layer output and unpruned layer output
○

○ and then finally choose the layer with minimum error to currently prune from.

HBGTS for Layer Selection

● We develop Hierarchical Backward Greedy Tree Search (HBGTS) for selecting the best layer to currently prune from.
●

● Key idea here is to calculate the error in final layer output, if layer j ∈ {1, ..., C} is pruned
○

○ and then finally choose the layer with minimum error to currently prune from.

31

Input
Image

Layer-1 Layer-2 Layer-3

.

(0)

(0)
(0)

(1)

(0)

(2)

(0)

(0)

(1)

Classification
Layer

.

.

.

Layer (2) Pruned

Layer (1) Pruned

(0) - No Pruning

Layer (3) Pruned

Un-Pruned
Layer

Pruned
Layer

Pruned
Layer

Un-Pruned
Layer

Un-Pruned
Layer

Pruned
Layer

Results and Analysis

Table: Performance comparison between different pruning methods on VGG16/CIFAR100 at 98% parameter
reduction and ResNet18/CIFAR10 at 95% parameter reduction

● We can clearly see that our methods outperform other pruning algorithms.
● The drop in params and flops is equivalent or more compared to other methods

32

Table: Comparison of pruning methods for ResNext101 32x16d (RN16) and a similar sized dense ResNext101 32x8d (RN8)
on CIFAR10 at 98% parameter reduction.

● Our backward method can be used for effectively pruning large models that exceed the capacity of commodity GPUs.
● ResNext101 32x16d has 193 M parameters and requires 7.62 GB of GPU memory for loading.
● We can efficiently deploy the pruned model on edge devices with GPU memory less than 2GB.

33

Results and Analysis (Cont.)

Results and Analysis (Cont.)

34

Figure: Test accuracy for (a) ResNet56/CIFAR100 (b) VGG16/CIFAR100 and (c) ResNet18/Tiny-Imagenet with
increasing parameter reduction

● We can clearly see that our methods outperform other pruning algorithms.
● As the percentage of parameter reduction increases, the difference in test accuracy between our proposed

methods and state-of-the-art methods also grows.

Results and Analysis (Cont.)

Figure: Visualisation of output feature map of ResNet32 2nd layer (top row) and 10th layer (bottom row) on CIFAR100

❖ Feature map of Layer 2 has a diverse set of filter outputs, indicates its usefulness in capturing different
features of the inputs. Our HBGTS-B prunes only 31.25% of its filters.

❖ Feature map outputs of Layer 10 looks very similar, denoting its redundancy in filter outputs. 93.75% of
its filters are removed by our HBGTS-B method.

35

36

Results and Analysis (Cont.)

Figure : Time comparison on ResNet/CIFAR10 at 63% parameter reduction.

Conclusion

● We proposed a hierarchical scheme with two-levels for faster non-uniform pruning.
●

● FP-OMP and FP-Backward identifies the most appropriate filters to be pruned from each layer.
●

● HBGS and HBGTS algorithms selects the best layer to currently prune from.

37

A Data-Driven Defense against Edge-case Model
Poisoning Attacks on Federated Learning

Kiran Purohit, Soumi Das, Sourangshu Bhattacharya and Santu Rana

Dept. of Computer Science & Engineering
IIT Kharagpur

Fundamental Difference from Centralized

39

Goal: Train the ML models at the clients

Federated Learning

40

Federated Examples

41

42

● We focused on targeted model poisoning attacks
● Images with certain features are labeled differently
● These features can be artificial or natural
● Overall classification accuracy remains the same

Model Poisoning Attacks on FL

Edge-case Attacks are Hard to Detect

Proposition: (Hardness of backdoor detection). Let f : Rn → R be a ReLU network and g : Rn → R be a function. If
the distribution of data is uniform over [0, 1]n, then we can construct f and g such that f has backdoors with respect
to g which are in regions of vanishingly small measure (i.e., edge-cases). Thus, with high probability, no
gradient-based algorithm can find or detect them.

* Attack of the Tails: Yes, You Really Can Backdoor Federated Learning (NeurIPS 2020)

 For non-data centric defenses, Attack Success Rate (ASR) is high.

43

 Therefore
there is a
need for

Data centric
defenses!!

Can Extra Defense Dataset help?

44

Our Defense Dataset

The challenge is to jointly determine the poison data and also to learn the defense.

45

Known
Clean Data

Clean Data

Unknown Data

Our defense dataset contains a mix of poisoned and clean examples, with only a few
known to be clean.

Overview of DataDefense

46
Figure: Overall Scheme of the DataDefense

Weighted Averaging

47

We compute the client importance score, 𝐶, during each FL round, ensuring that the attacker
receives the lowest score. This minimizes the attacker's contribution to the global model.

where,

48

Figure: Architecture Overview of the DataDefense

Overview of DataDefense

49

Effectiveness of DataDefense

Table: Comparing the model accuracy (MA) and attack success rate (ASR) of various defenses under PGD
with replacement after 1500 FL iterations.

50

Effectiveness of DataDefense

Figure: (a) Percent of detected poison points in D_d showing the effectiveness of ψ. (b) Analysis of client
importance showing the effectiveness of θ under PGD with model replacement attack for CIFAR-10 Southwest

51

Sensitivity of DataDefense

Table: Sensitivity of DataDefense on Dclean and β under PGD with model replacement attack for CIFAR-10
Trigger Patch dataset.

52

Conclusion

● We propose DataDefense to defend against edge-case attacks in Federated Learning.
● Our method does a weighted averaging of the clients' updates by learning weights for the client

models based on the defense dataset.
● We learn to rank the defense examples as poisoned, through an alternating minimization

algorithm.
● The results are found to be highly convincing and emerged as a useful application for

defending against backdoors in Federated Learning.

THANK YOU
FOR

YOUR ATTENTION!!!

https://github.com/kiranpurohit/

@kiranpurohit08

https://github.com/kiranpurohit/
https://twitter.com/kiranpurohit08

