

Application of Subset Selection in Efficient Machine Learning

IBM Maitreyee Research Showcase Kiran Purohit

Advisor: Prof. Sourangshu Bhattacharya

Dept. of Computer Science & Engineering IIT Kharagpur

- 1. A Greedy Hierarchical Approach to Whole-Network Filter-Pruning in CNNs (TMLR 2024)
- 2. EXPLORA: Efficient Exemplar Subset Selection for Complex Reasoning (EMNLP-main (long) 2024)

Burden of CNNs ——ResNet-152

60.2 million parameters and 231MB storage spaces;

380MB memory footprint

11.3 billion float point operations (FLOPs).

Filter Pruning ——Benefits

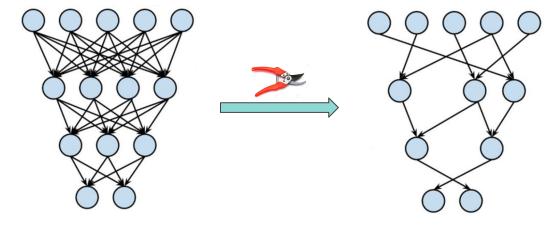
reduces the storage usage

decreases the memory footprint

accelerates the inference

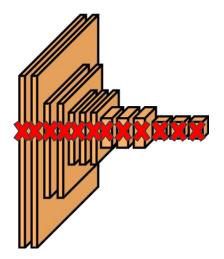
Network Pruning

Given a pre-trained network $\Phi(.)$, the goal is to compress the network while maintaining the high performance as much as possible by removing the unnecessary parameters.



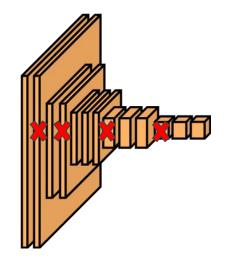
Final pruned network Φ '(.)

Pre-trained original network $\Phi(.)$



Uniform Pruning

- Prune filters uniformly from each layer
- Process each layer independently and sequentially.



Non-Uniform Pruning

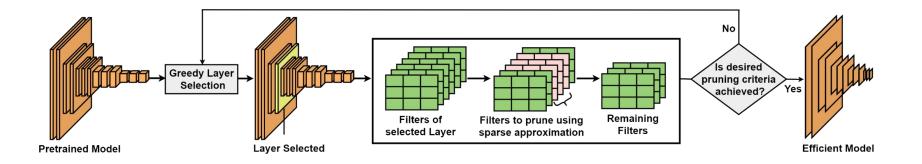
- Prune different fractions of filters from each layer
- All the layers in the network collectively make the final prediction

* accepted at AIMLSystems 2022 (Accurate and Efficient Channel pruning via Orthogonal Matching Pursuit)

A Greedy Hierarchical Approach

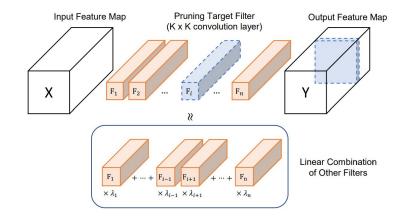
- We developed faster **non-uniform pruning** methods.
- We used a hierarchical scheme with two-levels:
 - **filter pruning** this step identifies the most appropriate filters to be pruned from each layer.
 - **layer selection** this step selects the best layer to currently prune from.

We apply these two steps iteratively to achieve a non-uniform pruning.



Related Work

LRF "Linearly Replaceable Filters for Deep Network Channel Pruning" AAAI 2021



LRF suggests that we can replace the filter that can be approximated by the linear combination of other filters

Related Work

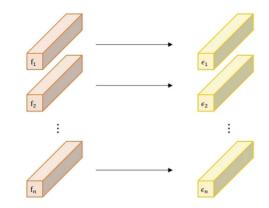
In a layer, we can approximate each filter as a linear combination of the other filters

$$f_{:,j} = \sum_{l \neq j} \lambda_{j,l} f_{:,l} + \epsilon_j$$

Here, ϵ = approximation error and $\lambda_{i,l}$ = weight coefficient of the respective filters

• Each $\lambda_{i,l}$ can be found by solving following minimization problem

 $\min_{\lambda_{j,:}} ||f_{:,j} - \sum_{l
eq j} \lambda_{j,l} f_{:,l}||^2$



Remove the ith filter with the smallest $||\epsilon_i||$

FP-OMP for Pruning Multiple Filters

We develop an Orthogonal Matching Pursuit (OMP) based algorithm for selecting retained filters of a layer into S. Hence filters that are to be pruned are $\{1,2,...n\}$ \ S.

We can approximate the pruned filters in terms of retained filters.

$$f_{:,j} = \sum_{l \in S} \lambda_{j,l} f_{:,l} + \epsilon_j, \forall j \notin S$$

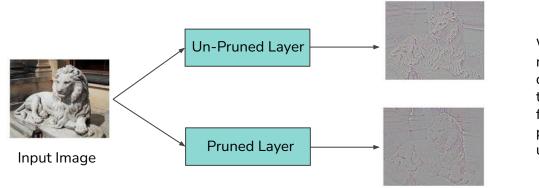
We pose a sparse approximation problem for finding S and λ

$$S^*, \lambda^* = \operatorname{argmin}_{|S| \le (1-\beta)n, \lambda} \sum_{j \in \{1, 2, \dots, n\}} ||f_{:,j} - \sum_{l \in S} \lambda_{j,l} f_{:,l}||^2$$

where **S** is the set of the selected/retained filters in a layer, **n** is the total number of filter in that layer, and β is the pruning fraction

HBGS for Layer Selection

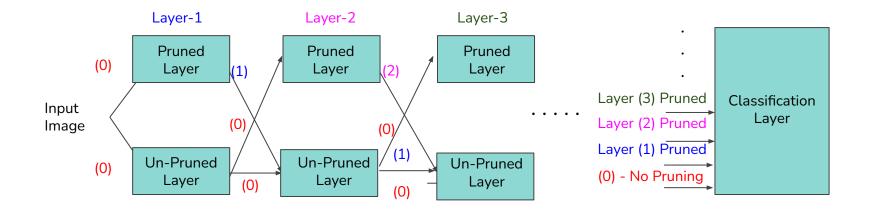
- We develop Hierarchical Backward Greedy Search (HBGS) for selecting the best layer to currently prune from.
- Key idea here is to calculate the relative reconstruction error between the pruned layer output and unpruned layer output
 - and then finally choose the layer with minimum error to currently prune from.



We want to minimise the difference b/w the output feature maps of pruned and unpruned layers

HBGTS for Layer Selection

- We develop Hierarchical Backward Greedy Tree Search (HBGTS) for selecting the best layer to currently prune from.
- Key idea here is to calculate the error in final layer output, if layer $j \in \{1, ..., C\}$ is pruned
 - and then finally choose the layer with minimum error to currently prune from.



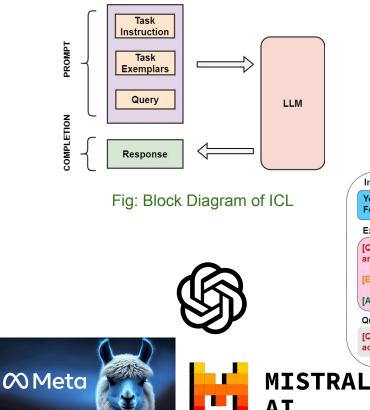
Results and Analysis

Method	Test Acc (%)	$egin{array}{c} \mathbf{Acc} \downarrow \ (\%) \end{array}$	$\begin{array}{c} \mathbf{Param} \downarrow \\ (\%) \end{array}$	$ \begin{array}{c} \mathbf{FLOPs} \downarrow \\ (\%) \end{array} $	VRAM (GB)
Dense RN16	92.1	0	-	-	7.62
Dense RN8	91.8	0	-	-	3.91
FP-Backward	92.9	-0.8	98.5	89.9	1.59
HBGS-B	93.0	-0.9	98.7	92.1	1.55
HBGTS-B	93.2	-1.1	98.8	94.3	1.51

Table: Comparison of pruning methods for ResNext101 32x16d (RN16) and a similar sized dense ResNext10132x8d (RN8) on CIFAR10 at 98% parameter reduction.

- Our greedy hierarchical methods can be used for effectively pruning large models that exceed the capacity of commodity GPUs.
- ResNext101 32x16d has 193 M parameters and requires 7.62 GB of GPU memory for loading.
- We can efficiently deploy the pruned model on edge devices with GPU memory less than 2GB.

In-Context Learning (ICL)



Exemplars / In-context examples / demonstration samples <Question, Explanation, Answer>

PROMPT TEMPLATE

Instruction

You are a helpful assistant helping to solve tasks requiring reasoning. Follow given examples and solve the problem in step by step manner.

Exemplar

[Question]: The average age of three boys is 45 years and their ages are in proportion 3:5:7. What is the age in years of the youngest boy?

[Explanation]: 3x + 5x + 7x = 45, x =3, 3x = 9

[Answer]: The answer is 9

Query

[Question]: John found that the average of 15 numbers is 40. If 10 is added to each number then the mean of the number is?

Response

LLM

xplanation]: (x0+x1+...x14)/15 = 40, ew_mean = 40 + 10 = 50

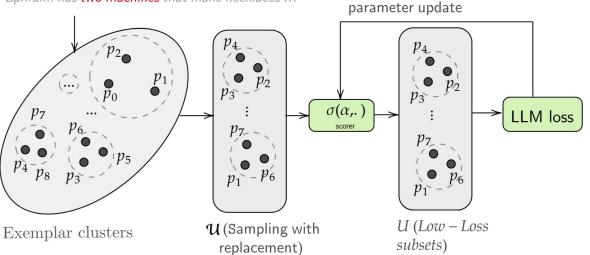
[Answer]: The answer is 50

Explore-Exploit Paradigm

Exemplars

p₁: While purchasing groceries ram bought **5** apples ...

p₂: Ephraim has two machines that make necklaces ...



Approx. error based

Results and Analysis

Method	GSM8K	AquaRat	TabMWP	FinQA	StrategyQA
		GPT-3.5-turbo			
dynamic					
KNN (Rubin et al., 2022)	53.45	51.96	77.07	51.52	81.83
KNN (S-BERT) (Rubin et al., 2022)	53.07	52.75	77.95	52.65	81.83
MMR (Ye et al., 2023b)	54.36	51.18	77.32	49.87	82.86
KNN+SC (Wang et al., 2023c)	80.21	62.59	83.08	54.49	83.88
MMR+SC (Wang et al., 2023c)	78.01	59.45	81.36	50.74	83.88
PromptPG (Lu et al., 2023b)	-	-	68.23	53.56	-
static					
Zero-Shot COT (Kojima et al., 2023)	67.02	49.60	57.10	47.51	59.75
Manual Few-Shot COT (Wei et al., 2023)	73.46	44.88	71.22	52.22	73.06
Random	67.79	49.80	55.89	53.70	81.02
PS+ (Wang et al., 2023b)	59.30	46.00	-	-	-
Auto-COT (Zhang et al., 2023b)	57.10	41.70	-	-	71.20
GraphCut (Iyer and Bilmes, 2013)	66.19	47.24	60.45	52.31	80.00
FacilityLocation (Iyer and Bilmes, 2013)	68.61	48.43	67.66	36.79	81.63
LENS (Li and Qiu, 2023)	69.37	48.82	77.27	54.75	79.79
LENS+SC (Li and Qiu, 2023)	79.37	57.87	80.68	60.06	82.24
Our Approach					
EXPLORA	77.86(12.24%) †	53.54(49.67%)†	83.07(17.51%) †	59.46(18.60%) †	85.71(15.63%) †
EXPLORA+SC	86.35(▲24.48%) ‡	63.39(129.84%) ‡	85.52(10.68%) ‡	64.52(17.84%) ‡	87.14 (49.21%)†
EXPLORA+KNN+SC	85.14 (122.73%)‡	62.20(127.41%)‡	86.29(12.39%) ‡	65.12(A18.94%) ‡	88.37(10.75%)†
EXPLORA+MMR+SC	86.13(124.16%) ‡	63.78 (1 30.64%) ‡	86.96(12.54%)‡	64.60(17.99%) ‡	87.55(49.73%)†
		GPT-40			
LENS (Li and Qiu, 2023)	76.19	64.56	86.34	69.31	92.85
EXPLORA	93.63	69.29	90.12	72.71	95.10

Table: Results across datasets in transfer setting using gpt-3.5-turbo with exemplars selected from Mistral-7b.

Results and Analysis (Cont.)

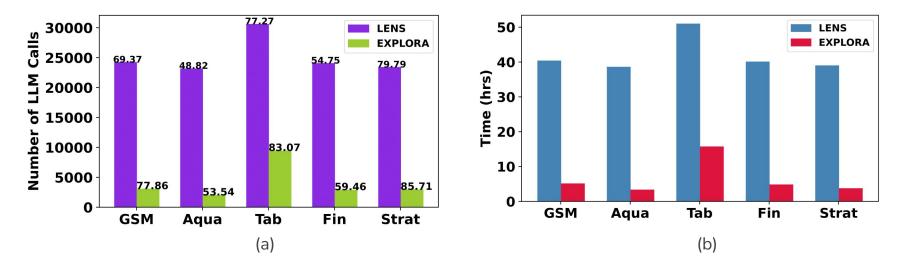


Table: (a) LLM calls LENS vs EXPLORA (y-axis) with corresponding EM scores indicated on top of bars. (b) Runtime comparison

THANK YOU FOR YOUR ATTENTION!!!

